27. A systematic study of the role of dissipative environment in regulating entanglement and exciton delocalization in the Fenna-Matthews-Olson complex, L. E. H. Rodriguez and A. A Kananenka, arXiv: 2401.01534 (2024)

26. Water inside the selectivity filter of a K+ ion channel: structural heterogeneity, picosecond dynamics, and hydrogen-bonding, M. J. Ryan, L. Gao, F. I. Valiyaveetil, A. A Kananenka, and M. T. Zanni, Journal of the American Chemical Society 146, 1543–1553 (2024)

25. Novel computational chemistry infrastructure for simulating astatide in water: From basis sets to force fields using particle swarm optimization, K. J. R. Espinosa, A. A. Kananenka, and A. A. Rusakov, Journal of Chemical Theory and Computation 19, 7998–8012 (2023)

24. Probing ion configurations in the KcsA selectivity filter with single isotope labels and 2D IR spectroscopy, M. Ryan, L. Gao, F. Valiyaveetil, M. T. Zanni, and A. A. Kananenka, Journal of the American Chemical Society 145, 18529–18537 (2023)

23. QD3SET-1: A database with quantum dissipative dynamics data sets, A. Ullah, L. E. H. Rodriguez, P. O. Dral, and A. A. Kananenka, Frontiers in Physics 11, 1223973 (2023)

22. Combinational vibration modes in H2O/HDO/D2O mixtures detected thanks to the superior sensitivity of femtosecond stimulated Raman scattering, M. Pastorczak, K. Duk, S. Shahab, and A. A. Kananenka, The Journal of Physical Chemistry B 127, 4843–4857 (2023)

21. Neural Networks, P. O. Dral, A. A. Kananenka, F. Ge, and B.-X. Xue, in: Quantum Chemistry in the Age of Machine Learning, edited by P. O. Dral (Elsevier, 2023)

20. A comparative study of different machine learning methods for dissipative quantum dynamics, L. E. H. Rodriguez, A. Ullah, K. J. R. Espinosa, P. O. Dral, and A. A. Kananenka, Machine Learning: Science and Technology 3, 045016 (2022)

19. Convolutional neural networks for long time dissipative quantum dynamics, L. E. H. Rodriguez and A. A. Kananenka, The Journal of Physical Chemistry Letters 12, 2476–2483 (2021)

18. Unusually strong hydrogen bond cooperativity in particular (H2O)20 clusters, A. A. Kananenka and J. L. Skinner, Physical Chemistry Chemical Physics 22, 18124–18131 (2020)
Highlighted in Chemistry World: “Hydrogen bonds join forces to maximise water–water interaction”

Prior to University of Delaware

17. Dephasing and decoherence in vibrational and electronic line shapes, A. A. Kananenka, S. E. Strong, and J. L. Skinner, The Journal of Physical Chemistry B 124, 1531–1542 (2020)

16. IR spectroscopy can reveal the mechanism of K+ transport in ion channels, S. E. Strong, N. J. Hestand, A. A. Kananenka, M. T. Zanni, and J. L. Skinner, Biophysical Journal 118, 254–261 (2020)

15. Machine learning for vibrational spectroscopic maps, A. A. Kananenka, K. Yao, S. A. Corcelli, and J. L. Skinner, Journal of Chemical Theory and Computation 15, 6850–6858 (2019)

14. OH-stretch Raman multivariate curve resolution spectroscopy of HOD/H2O mixtures, A. A. Kananenka, N. J. Hestand, and J. L. Skinner, The Journal of Physical Chemistry B 123, 5139–5146 (2019)

13. Fermi Resonance in OH-stretch vibrational spectroscopy of liquid water and the water hexamer, A. A. Kananenka and J. L. Skinner, The Journal of Chemical Physics 148, 244107 (2018)

12. A comparative study of different methods for calculating electronic transition rates, A. A. Kananenka, X. Sun, A. Schubert, B. D. Dunietz, and E. Geva, The Journal of Chemical Physics 148, 102304 (2018)

11. Nonadiabatic dynamics via the symmetrical quasi-classical method in the presence of anharmonicity, A. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, The Journal of Physical Chemistry Letters 9, 319–326 (2018)

10. Combining density functional theory and Green’s function theory: Range-separated, nonlocal, dynamic, and orbital-dependent hybrid functional, A. A. Kananenka and D. Zgid, Journal of Chemical Theory and Computation 13, 5317–5331 (2017)

9. Accurate long-time mixed quantum-classical Liouville dynamics via the transfer tensor method, A. A. Kananenka, C.-Y. Hsieh, J. Cao, and E. Geva, The Journal of Physical Chemistry Letters 7, 4809–4814 (2016)

8. Rigorous ab initio quantum embedding for quantum chemistry using Green’s function theory: Screened interaction, nonlocal self-energy relaxation, orbital basis, and chemical accuracy, T. N. Lan, A. A. Kananenka, and D. Zgid, Journal of Chemical Theory and Computation 12, 4856–4870 (2016)

7. Efficient temperature-dependent Green’s function methods for realistic systems: Using cubic spline interpolation to approximate Matsubara Green’s Functions, A. A. Kananenka, A. R. Welden, T. N. Lan, E. Gull, and D. Zgid, Journal of Chemical Theory and Computation 12, 2250–2259 (2016)

6. Efficient temperature-dependent Green’s function methods for realistic systems: Compact grids for orthogonal polynomial transforms, A. A. Kananenka, J. J. Phillips, and D. Zgid, Journal of Chemical Theory and Computation 12, 564–571 (2016)

5. Communication: Towards ab initio self-energy embedding theory in quantum chemistry, T. N. Lan, A. A. Kananenka, and D. Zgid, The Journal of Chemical Physics 143, 241102 (2015)

4. Fractional charge and spin errors in self-consistent Green’s function theory, J. J. Phillips, A. A. Kananenka, and D. Zgid, The Journal of Chemical Physics 142, 194108 (2015)

3. Rapid Communication: Systematically improvable multiscale solver for correlated electron systems, A. A. Kananenka, E. Gull, and D. Zgid, Physical Review B 91, 121111(R) (2015)

2. Efficient onstruction of exchange and correlation potentials by inverting the Kohn-Sham equations, A. A. Kananenka, S. V. Kohut, A. P. Gaiduk, I. G. Ryabinkin, and V. N. Staroverov, The Journal of Chemical Physics 139, 074112 (2013)

1. Accurate and efficient approximation to the optimized effective potential for exchange, I. G. Ryabinkin, A. A. Kananenka, and V. N. Staroverov, Physical Review Letters 111, 013001 (2013)