A. V. Teplyakov, cv

Curriculum Vitae

Andrew V. Teplyakov, Ph. D.

University of Delaware,

Newark, DE 19711                                              Department of Chemistry and Biochemistry, Lammot DuPont Laboratory,

 

Tel: (302) 831-1969

Fax: (302) 831-6335

e-mail: andrewt@udel.edu

http://www.udel.edu/chem/teplyakov/teplyakov.htm

 

___________________________________________________________________________________________________________________________

PERSONAL:

Date of Birth:                    January 23, 1970

Place of Birth:                   Moscow, Russia

PRIMARY RESEARCH INTERESTS: Molecular and microelectronics, semiconductor nanostructures and thin films, materials and structures for sustainable energy, electronic properties of covalently bound chemical and biological systems on semiconductor substrates, experimental and computational studies of surface chemical reactivity.

EDUCATION: Doctor of Philosophy in Physical Chemistry           1997

Columbia University, New York, NY.

Thesis Advisor: Professor Brian E. Bent

Thesis Title: “Bonding and reactions of hydrocarbons and their fragments on single crystal surfaces of copper and copper-platinum alloy: identification of surface intermediates and reaction mechanisms”

 

Master of Philosophy in Chemistry                         1996

Columbia University, New York, NY.

 

Master of Arts in Chemistry                                    1994

Columbia University, New York, NY.

 

Bachelor of Science in Chemistry                            1992

Moscow State University, Moscow, Russia.

 

RESEARCH EXPERIENCE:

2008-Present. Professor at the University of Delaware

2004-2008. Associate professor at the University of Delaware.

1998-2004. Assistant professor at the University of Delaware.

1996-1998       Postdoctoral research with Prof. Stacey Bent (New York University, now at Stanford University).  This research was related to chemical properties of semiconductor surfaces.

1992-1996       Doctoral research with Prof. Brian Bent (then at Columbia University; deceased).  This research was focused on the reactions of hydrocarbons and halohydrocarbons on single crystal surfaces.

1990-1992       Undergraduate research with Prof. Igor Beckman (Moscow State University, Division of Chemical Engineering and A. V. Topchiev Institute of Petrochemical Synthesis, Russian Academy of Sciences, Moscow, Russia).  This research was related to integrated polymeric membrane-moving liquid modules for gas separation and purification.

1988-1990       Undergraduate research with Prof. Eduard Filatov (Moscow State University, Division of Radiochemistry).  The research involved applied radiochemistry and radiotracer techniques for studies of the reactions of hot tritium atoms with solid organic substrates.

 

TEACHING EXPERIENCE:

Spring 1991:   Teaching Assistant Radiochemistry and Chemical Technology                                                         (Moscow State University);

Fall 1992:        Teaching Assistant Organic Chemistry (Columbia University);

Spring 1993:    Teaching Assistant Organic Chemistry (Columbia University);

Fall 1993:       Teaching Assistant Organic Chemistry (Columbia University);

1998-present:  Physical Chemistry for Majors (CHEM-443 and CHEM-444, University of Delaware);

2000-present:  Structure and Properties of Surfaces (CHEM-874, University of Delaware);

2010-present:  Introductory Physical Chemistry (CHEM-418 and CHEM 419, University of Delaware).

PROFESSIONAL MEMBERSHIPS:

Mendeleev Chemical Society (Russia)

American Chemical Society (USA)

American Vacuum Society (USA)

Sigma Xi (USA)

Center for Catalytic Science and Technology at the University of Delaware (1998-present)

AWARDS:

American Chemical Society Delaware Section Award, 2012.

Top Cited Author Surface Science Reports award based on Scopus citations from 2005-2009. (Leftwich, T. R. and Teplyakov, A. V. Chemical Manipulation of Multifunctional Hydrocarbons on Silicon Surfaces. Invited Review. Surf. Sci. Rep. 2008, 63, 1-71).

Columbia University Pegram Award for the meritorious achievement by graduate students in their progress toward the Ph. D., 1996

Diploma with excellence of Moscow State University, 1992.

Best undergraduate project in physical chemistry. Moscow State University, 1992.

FIELD RESEARCH:

1. Summer 1989: Pollution in Far East (joint project of Institute of Oceanography and Moscow State University, Russia);

2.   Summer 1991: Pollution of Black Sea (Moscow – Istanbul; Moscow State University).

SERVICE TO THE GREATER SCIENTIFIC COMMUNITY:

Associate Editor: Applied Surface Science

Professional Meetings and Symposia Organized:

Symposium “Chemistry of Carbonaceous Materials” at the National Meeting of the American Chemical Society (New Orleans, LA 2003)

Symposium “Chemistry of Carbonaceous Materials” at the National Meeting of the American Chemical Society (San Diego, CA 2005, in series with New Orleans, LA 2003)

Surface Science Section at the Eastern Analytical Symposium 2008, 2010, 2011

Telluride Science Research Center workshop “Semiconductor Surface Chemistry”, Summer 2010

Surface Science Section (five sessions) at the 86th ACS Colloid and Surface Science Symposium, Johns Hopkins University (Baltimore, MD, June 10-14th, 2012, co-organizer with Prof. H. Fairbrother).

Symposium “Molecular Processes at Solid Surfaces” at the National Meeting of the American Chemical Society (Philadelphia, PA 2012).

 

 

Other professional activities:

Award Committee Chair, Executive Board of Eastern Analytical Symposium 2012.

Participant in the NSF MSN review panel, 2011.

Award Committee vice-Chair, Executive Board of Eastern Analytical Symposium 2011.

Transportation Chair, Executive Board of Eastern Analytical Symposium 2010.

Participant in the NSF STTR review panel, 2009.

Participant in the NSF Review Panel on Integrative Graduate Education & Research Traineeship, 2008.

Participant in the NSF Review Panel on Course, Curriculum, Laboratory Improvement Program, member, 2001.

Participant in the Department of Energy Workshop, 2002.

General User, National Synchrotron Light Source, Brookhaven National Laboratory (1993-present)

Chair of Physical Chemistry sessions on multiple National Meetings of the American Chemical Society.

Chair of Surface Science sessions on multiple National Meetings of the American Vacuum Society.

Chair of Surface Science sessions at Eastern Analytical Symposium 2008, 2009, 2010, 2011.

Organizer of the Telluride Workshop on Semiconductor Surface Chemistry 2006, 2010, 2014.

Over 60 presentations were given since 1993, 50 of them invited (including presentations at the National Meetings of the American Chemical Society, American Vacuum Society, Eastern Analytical Symposium, Gordon Research Conference).

Over 50 other presentations co-authored by Dr. Andrew V. Teplyakov were delivered by students and postdoctoral fellows in his group and in research groups involved in collaborative investigations. These oral and poster presentations were given on national meetings of the American Chemical Society and the American Vacuum Society, Middle Atlantic Regional Meetings of the American Chemical Society, Eastern Analytical Symposia, Annual Reviews of the Center for Catalytic Science and Technology at the University of Delaware.

 

INVITED PRESENTATIONS:

  1. State University of New York at Albany (Albany, NY) 1997.
  2. University of Delaware (Newark, DE) 1998.
  3. DuPont Central Research and Development (Wilmington, DE) 1999.
  4. Center for Catalytic Science and Technology at the University of Delaware (Newark, DE) 1999.
  5. Rutgers, The State University of New Jersey (New Brunswick, NJ) 2000.
  6. City College of the City University of New York (New York, NY) 2000.
  7. DuPont Central Research and Development (Wilmington, DE) 2000.
  8. Center for Catalytic Science and Technology at the University of Delaware (Newark, DE) 2000.
  9. University of California, Riverside (Riverside, CA) 2001.
  10. University of California, Davis (Davis, CA) 2001.
  11. University of Southern California, (Los Angeles, CA) 2001.
  12. Stanford University (Palo Alto, CA) 2001.
  13. Temple University (Philadelphia, PA) 2001.
  14. University of Pittsburgh (Pittsburgh, PA) 2002.
  15. Carnegie Mellon University (Pittsburgh, PA) 2002.
  16. Johns Hopkins University (Baltimore, MD) 2002.
  17. Telluride Workshop on Semiconductor Surface Chemistry (Telluride, CO) 2002.
  18. Princeton University (Princeton, NJ) 2003.
  19. Brigham Young University (Provo, UT) 2003.
  20. University of Reno, Nevada (Reno, NV) 2003.
  21. University of California, San Diego (La Jolla, CA) 2003.
  22. 226th National Meeting of the American Chemical Society (New York, NY) 2003.
  23. 227th National Meeting of the American Chemical Society (Anaheim, CA) 2004.
  24. Lyondell Chemical Company (PA) 2004.
  25. University of South Carolina (Columbia, SC) 2004.
  26. University of North Carolina (Charlotte, NC) 2004.
  27. Center for Catalytic Science and Technology, University of Delaware (Newark, DE) 2005.
  28. Pontifical Catholic University of Peru (PCUP, Lima, Peru) 2005.
  29. George Washington University (Washington, DC) 2005.
  30. Columbia University (New York, NY) 2005 (extended group meeting in the group of Professor George W. Flynn).
  31. 229th National Meeting of the American Chemical Society (San Diego, CA) 2005.
  32. University of Missouri-Columbia (Columbia, MO) 2005.
  33. Oklahoma State University-Stillwater (Stillwater, OK) 2005.
  34. Washington State University (Pullman, WA) 2006.
  35. Telluride Workshop on Semiconductor Surface Chemistry (Telluride, CO) 2006.
  36. Hunter College (New York, NY) 2006.
  37. Gordon Research Conference on Chemical Reactions at Surfaces (Ventura, CA) 2007.
  38. Lehigh University (Bethlehem, PA) 2007.
  39. University of Delaware, Teachers Conference (Newark, DE) 2007.
  40. Eastern Analytical Symposium (Somerset, NJ) 2007.
  41. 233rd National Meeting of the American Chemical Society (Chicago, IL) 2007.
  42. Moscow State University (Moscow, Russia) 2007.
  43. University of Pittsburgh (Pittsburgh, PA) 2007.
  44. Temple University (Philadelphia, PA) 2008. The visit combined the research presentation and discussion and the meeting with the ACS-student affiliates (Temple University Chemical Society).
  45. Columbia University (New York, NY), April 2008.
  46. Lanzhow Institute of Chemical Physics, Chinese Academy of Sciences (Lanzhow, China), June 2008.
  47. College of Chemistry and Chemical Engineering, Lanzhou University (Lanzhow, China), June 2008.
  48. Yuzhong Campus of Lanzhou University, Presentation to the undergraduate students (Lanzhow, China), June 2008.
  49. Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences (Beijing, China), June 2008.
  50. Iberoamerican Congress of Chemistry and XXIV Congress of the Peruvian Chemical Society (Congreso Oberoamericano De Química, XXIV Congreso Peruano de Química) (Cuzco, Peru), October 2008.
  51. Tufts University (Boston, MA) 2009.
  52. Smith College (Northampton, MA) 2009.
  53. North Carolina State University, Department of Chemical Engineering (Raleigh, NC) 2009.
  54. University of Kentucky (Lexington, KY) 2009.
  55. The 56th International Symposium and Exhibition of the American Vacuum Society (San Jose, CA) 2009.
  56. Eastern Analytical Symposium (Somerset, NJ), 2009.
  57. Telluride Workshop on Semiconductor Surface Chemistry (Telluride, CO) 2010.
  58. Eastern Analytical Symposium (Somerset, NJ), 2010.
  59. Drexel University (Philadelphia, PA), 2011.
  60. University of Texas at Austin, Department of Chemical Engineering (Austin, TX) 2011.
  61. University of Texas at Dallas, Department of Materials Science and Engineering (Dallas, TX) 2011.
  62. Texas A&M University (College Station, TX) 2011.
  63. Moscow State University of Fine Chemical Technology (Moscow, Russia) 2011.
  64. Schlumberger Technology Corporation (Sugarland, TX) 2012.
  65. University of Texas at San Antonio (Department of Physics and Astronomy) 2012.
  66. 243rd National Meeting of the American Chemical Society, Division of Energy and Fuels, (San Diego, CA) 2012.
  67. 243rd National Meeting of the American Chemical Society, Division of Colloid and Surface Chemistry, (San Diego, CA) 2012.
  68. DuPont Eastern European Network-Russia, DuPont Central Research and Development (Wilmington, DE) 2012.
  69. 244th National Meeting of the American Chemical Society, Award Symposium in Honor of Dr. Anne M. Gaffney for the Award in Industrial Chemistry, (San Diego, CA) 2012.
  70. Workshop at the University College, London (UCL) Theory Meets Experiment: Organic Molecules on Inorganic Substrates (London, UK), June 24th, 2013.
  71. University College, London (UCL) Department of Electronic and Electrical Engineering (London, UK) 2013.
  72. University of Crete (Department of Materials Science and Technology), (Crete, Greece), 2013.
  73. Institute of Chemistry and Biochemistry – Physical and Theoretical Chemistry, Freie Universität Berlin (Berlin, Germany) 2013.
  74. Middle Tennessee State University, Department of Chemistry (Murfreesboro, TN) 2013.
  75. Georgia Institute of Technology, School of Chemical & Biomolecular Engineering (Atlanta, GA) 2013.
  76. University of South Carolina, Department of Chemistry and Biochemistry (Columbia, SC) 2013.
  77. Center for Catalytic Science and Technology at the University of Delaware (Newark, DE) 2013.
  78. Rutgers, the State University of New Jersey, Laboratory of Surface Modification (LSM) seminar series (New Brunswick, NJ), 2014.
  79. 246th National Meeting of the American Chemical Society (Dallas, TX), 2014.
  80. Invited LaMattina Lectureship at the Department of Chemistry, University of New Hempshire (Durham, NH), 2014.
  81. Telluride Workshop on Semiconductor Surface Chemistry (Telluride, CO) 2014.

PUBLICATIONS:

Invited Reviews, Concepts, Books:

101. Teplyakov, A. V. Adsorption on Semiconductor Surfaces. Chapter in “Surface and Interface Science”. Edited book, ed.: Klaus Wandelt, to be published 2014, John Wiley & Sons.

100. Bent, S. F. and Teplyakov, A. V. Semiconductor surface functionalization for advances in electronics, energy conversion, and dynamic systems. J. Vac. Sci Technol. A, 2013, 31(5), 050810-1-12. Invited Review Article for the Special AVS 60th Anniversary Issue, awarded top 20 most downloaded articles in JVST.

99. Tian, F. and Teplyakov, A. V. Silicon surface functionalization targeting Si-N linkages. Langmuir 2013, 29(1), 13-28. Invited Feature Article, Image featured on the cover of the journal.

98.Teplyakov, A. V. Influence of functional groups in substituted aromatic molecules on the selection of reaction channel, Chapter 6. In “Functionalization of Semiconductor Surfaces.” Edited book, editors: Dr. Feng Tao and Prof. Steven L. Bernasek, John Wiley & Sons, Inc., Hoboken, NJ, 2012, ISBN: 978-0-470-56294-9.

97. Dybowski, C. and Teplyakov, A. Essential Data and Equations for a Course in Physical Chemistry, 2nd Edition, D & T Publishing, 2011, ISBN: 978-0-615-48597-3.

96. Perrine, K. A. and Teplyakov, A. V. Reactivity of selectively terminated single crystal silicon surfaces. Invited Review. Chem. Soc. Rev. 2010, 39, 3256 – 3274.

95. Dybowski, C. and Teplyakov, A. Essential Data and Equations for a Course in Physical Chemistry, Pearson Publishing, 2009, ISBN-13: 978-0-558-30403-4; ISBN-10: 0-558-30403-6.

94. Leftwich, T. R. and Teplyakov, A. V. Chemical manipulation of multifunctional hydrocarbons on silicon surfaces. Invited Review. Surf. Sci. Rep. 2008, 63, 1-71. This review article received Top Cited Author Surface Science Reports Award based on Scopus citations from 2005-2009.

93. Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Chemistry of organometallic compounds on silicon: The first step in film growth. Invited Concept Paper. Chemistry-A European Journal 2007, 13, 9164-9176.

 

List of Publications:

92. Gao, J and Teplyakov, A. V. Chemical Transformations of Acetone on ZnO Powder. J. Catal. 2014, 319, 136-141.

91. Cui, Y., Tian, F., Gao, F. and Teplyakov, A. V. Building organic monolayers based on fluorinated amines on the Si(111) surface. In revision for J. Phys. Chem. C.

90. Kung, H. and Teplyakov, A. V. In-situ Investigation of Organic Ligand Displacement Processes on ZnO Powder Surface. Accepted to J. Phys. Condens. Matter. (Invited article for Special Issue entitled “Organic molecules on inorganic surfaces “).

89. Miller, T.; Pirolli, L.; Deng, F., Ni, C. and Teplyakov, A. V. Structurally Different Interfaces between Electrospark-Deposited Titanium Carbonitride and Tungsten Carbide Films on Steel. Surf. Coat. Technol. 2014, DOI: 10.1016/j.surfcoat.2014.07.076.

88. Provisional Patent Application “Nanoparticle Layer Deposition” (Appl. 61/948,734, March 6, 2014).

87. Miller, T. and Teplyakov, A. V. Attachment Chemistry of PCBM to a Primary-Amine-Terminated Organic Monolayer on a Si(111) Surface. Langmuir, 2014, 30, 5105-5114.

86. Gao, J. and Teplyakov, A. V. Thermal Transformations of 2-Chlorophenol on a Surface of ZnO Powder Catalyst, Catal. Today 2014, 238, 111-117.

85. Tian, F., Cui, Y. and Teplyakov, A. V. Nitroxidation of H-terminated Si(111) Surfaces with Nitrobenzene and Nitrosobenzene, J. Phys. Chem. C 2014, 118(1), 502-512.

84. Kung, H. and Teplyakov, A. V. Formation of Copper Nanoparticles on ZnO Powder by a Surface-Limited Reaction, J. Phys. Chem. C 2014, 118(4), 1990-1998.

83. Liu, Y., RamaRao, N., Miller, T., Hadjipanayis, G. and Teplyakov, A. V. Controlling physical properties of iron nanoparticles during assembly by “click chemistry”. J. Phys. Chem. C 2013, 117, 19974-19983.

82. Lin, J.-M. and Teplyakov, A. V. Computational Investigation of Surface Reactivity of Functionalized Silicon Surfaces in Deposition Processes. Theor. Chem. Acc. 2013, 132, 1404-1-14.

81. Tian, F., Taber, D. F. and Teplyakov, A. V. An –NH- terminated silicon surface and a method for its preparation. US Patent: US 20130287667 A1, 2013.

80. Gao, J. and Teplyakov, A. V. Surface species formed during thermal transformation of ethanol on ZnO powder. J. Catal. 2013, 300, 163-173.

79. Lin, J.-M.; Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Competing reactions during metalorganic deposition: Ligand-exchange versus direct reaction with the substrate surface. J. Vac. Sci. Technol. A 2013, 31(2), 021401-1-021401-17.

78. Liu, Y.; Chen, J. and Teplyakov, A. V. Chemical passivation processes for biofunctionalization schemes on semiconductors surfaces. Langmuir 2012, 28 (44), 15521-15528.

77. Liu, Y. and Teplyakov, A. V. Using a Combination of Microscopy and Spectroscopy to Confirm Covalent Bonding of DNA on Functionalized Semiconductor Surfaces, SurFACTS in Biomaterials, 2012, 17 (4), 10-11.

76. Miller, T.; Lin, J.-M.; Pirolli, L.; Coquilleau, L.; Luharuka, R. and Teplyakov, A. V. Investigation of thin titanium carbonitride coatings deposited onto stainless steel. Thin Solid Films 2012, 522, 193-198.

75. Perrine, K. A.; Lin, J.-M. and Teplyakov, A. V. Controlling the formation of metallic nanoparticles on functionalized silicon surfaces. J. Phys. Chem. C 2012, 116 (27), 14431–14444.

74. Tian, F., Yang, D., Opila, R. L. and Teplyakov, A. V. Chemical and electrical passivation of Si(111) surfaces. Appl. Surf. Sci. 2012, 258, 3019-3026.

73. Perrine, K. A., Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Simulating the reactivity of disordered surface of the TiCN thin film. J. Phys. Chem. C 2011, 115, 15432-15439.

72. Tian, F., Taber, D. F. and Teplyakov, A. V. –NH- termination on Si(111) surface by wet chemistry. J. Am. Chem. Soc. 2011, 133, 20769-20777.

71. Polyakova (Stolyarova), E., Rim, K. T., Eom, D., Douglass, K., Opila, R., Heinz, T., Teplyakov, A. V. and Flynn, G. W. Scanning tunneling microscopy and X-ray photoelectron spectroscopy studies of graphene films prepared by sonication-assisted dispersion. ACS Nano 2011, 5(8), 6102-6108. This work is highlighted in nanotechweb.org (http://nanotechweb.org/cws/article/tech/46735).

70. Bent, S. F.; Kachian, J. S.; Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Tuning the reactivity of semiconductor surfaces by functionalization with amines of different basicity. PNAS 2011, 108(3), 956-960.

69. Douglass, K.; Hunt, S.; Teplyakov, A. and Opila, R. Surface cleaning procedures for thin films of indium gallium nitride grown on sapphire. Appl. Surf. Sci. 2010, 257, 1469-1472.

68. Rodríguez-Reyes, J. C. F., Teplyakov, A. V. and Brown, S. D. Qualitative and quantitative analysis of complex temperature-programmed desorption data by multivariate curve resolution. Surf. Sci. 2010, 604, 2043-2054

67. Tian, F., Ni, C. and Teplyakov, A. V. Integrity of functional self-assembled monolayers on hydrogen-terminated silicon-on-insulator wafers. Appl. Surf. Sci. 2010, 257(4), 1314-1318.

66. Perrine, K. A. and Teplyakov, A. V. Metallic nanostructure formation limited by the surface hydrogen on silicon. Langmuir 2010, 26(15), 12648–12658.

65. Rodríguez-Reyes, J. C. F., Ni, C., Bui, H. P., Beebe, T. P., Jr., and Teplyakov, A. V. Reversible tuning of the surface chemical reactivity of titanium nitride and nitride-carbide diffusion barrier thin films. Chem. Mater. 2009, 21(21), 5163-5169.

64. Madachik, M. R. and Teplyakov, A. V. Coadsorption of ethylene and nitrobenzene on Si(100)-2×1: Towards surface patterning at the molecular level. J. Phys Chem. C 2009, 113, 18270-18275.

63. Zhang, X., Antonopoulos, I. H., Kumar, S., Chen, J., and Teplyakov, A. V. Tuning the Geometry of Shape-restricted DNA Molecules on the Functionalized Si(111). Appl. Surf. Sci.2009, 256, 815-818.

62. Leftwich, T. R. and Teplyakov, A. V. Calibration of computationally predicted N 1s binding energies by comparison with X-ray photoelectron spectroscopy measurements. J. Electr. Spec. Rel. Phenom. 2009, 175, 31-40.

61. Zhang, X., Kumar, S., Chen, J. and Teplyakov, A. V. Covalent attachment of DNA molecules on amine-functionalized Si(111) surface. Surf. Sci. 2009, 603, 2445-2475.

60. Perrine, K. A., Leftwich, T. R., Weiland, C., Madachik, M. R., Opila, R. L. and Teplyakov, A. V. Reactions of aromatic bifunctional molecules on silicon surfaces: nitrosobenzene and nitrobenzene. J. Phys. Chem. C 2009, 113(16), 6643–6653.

59. Leftwich, T. R., Madachik, M. R. and Teplyakov, A. V. Dehydrative cyclocondensation reactions on hydrogen-terminated Si(100) and Si(111): An ex situ tool for the modification of semiconductor surfaces. J. Am. Chem. Soc. 2008, 130, 16216-16223. This work is highlighted in Chemical and Engineering News, November 24, 2008.

58. Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Mechanisms of adsorption and decomposition of metal alkylamide precursors for ultrathin film growth. J. Appl. Phys. 2008, 104, 084907-1-084907-6.

57. Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Role of surface strain in the subsurface migration of adsorbates on silicon. Phys Rev. B. 2008, 78, 165314-1-165314-14.

56. Madachik, M. and Teplyakov, A. V. Unique lack of chemical reactivity for 2,3-dimethyl-2-butene on a Si(100)-2×1 surface. J. Vac. Sci. Technol. B 2008, 26(5), 1241-1247.

55. Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Chemisorption of tetrakis-dimethylamido-titanium on Si(100)-2×1: C-H and C-N bond reactivity leading to low-temperature decomposition pathways. J. Phys. Chem. C 2008, 112, 9695-0705.

54. Perrine, K. A., Skliar, D. B., Willis, B. G. and Teplyakov, A. V. Molecular level investigation of 2,2,6,6-tetramethyl-3,5-heptanedione on Si(100)-2×1: Spectroscopic and computational studies, Surf. Sci. 2008, 602, 2222-2231.

53. Leftwich, T. R. and Teplyakov, A. V. Cycloaddition reactions of phenylazide and benzylazide on a Si(100)-2×1 surface. J. Phys. Chem. C 2008, 112, 4297-4303.

52. Zhang, X. and Teplyakov, A. V. Adsorption of C60 Buckminster fullerenes on an 11-amino-1-undecene covered Si(111) substrate. Langmuir, 2008, 24, 810-820. This work is featured on the cover of the issue.

51. Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Surface transamination reaction for tetrakis(dimethylamido)titanium with NHX-terminated Si(100) surfaces. J. Phys. Chem. C 2007, 111(44), 16498-16505.

50. Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Cooperative nitrogen insertion processes: Thermal transformation of NH3 on a Si(100) surface. Phys. Rev. B, 2007, 76, 075348-1-075348-16.

49. Rodríguez-Reyes, J. C. F. and Teplyakov, A. V. Chemistry of diffusion barrier film formation: Adsorption and dissociation of tetrakis-(dimethylamino)-titanium on Si(100)-2×1. J. Phys. Chem. C 2007, 111, 4800-4808.

48. Ni, C.; Zhang, Z.; Wells, M.; Beebe, T. P., Jr.; Pirolli, L.; Méndez De Leo, L. P., and Teplyakov, A. V. Effect of film thickness and the presence of surface fluorine on the structure of a thin barrier film deposited from tetrakis-(dimethylamino)-titanium onto a Si(100)-2×1 substrate. Thin Solid Films 2007, 515, 3030-3039.

47. Pirolli, L. and Teplyakov, A. V. Adsorption and thermal chemistry of 1,1,1,5,5,5,-hexafluoro-2,4-pentanedione (hfacH) and (hexafluoroacetylacetonate)Cu (vinyltrimethylsilane) ((hfac)Cu(VTMS)) on TiCN-covered Si(100) surface. Surf. Sci. 2006, 601, 155-164.

46. Méndez De Leo, L. P.; Pirolli, L. and Teplyakov, A. V. Chemistry of 1,1,1,5,5,5-hexafluoro-2,4-pentanedione on Si(100)-2×1. J. Phys. Chem. B 2006, 110, 14337-14344.

45. Pirolli, L. and Teplyakov, A. V. Molecular view of copper deposition chemistry: (hexafluoroacetylacetonate)Cu(vinyltrimethylsilane) on a Si(100)-2×1 Surface. Surf. Sci. 2006, 600, 3313-3320.

44. Bocharov, S.; Dmytrenko, O.; Méndez De Leo, L. P. and Teplyakov, A. V. Azide reactions for controlling clean silicon surface chemistry: Benzylazide on Si(100)-2×1. J. Am. Chem. Soc. 2006, 128, 9300-9301.

43. Méndez De Leo, L. P. and Teplyakov, A. V. Nitro group as a means of attaching organic molecules to silicon: Nitrobenzene on Si(100)-2×1. J. Phys. Chem. B 2006, 110, 6899-6905.

42. Pirolli, L. and Teplyakov, A. V. Vinyltrimethylsilane (VTMS) as a probe of chemical reactivity of a TiCN diffusion barrier-covered silicon surface. J. Phys. Chem. B. 2006, 110, 4708-4716.

41. Pirolli, L. and Teplyakov, A. V. Complex thermal chemistry of vinyltrimethylsilane (VTMS) on Si(100)-2´1. J. Phys. Chem. B 2005, 109(17), 8462-8468.

40. Watras, M. J. and Teplyakov, A. V. An infrared and computational investigation of vanadium-substituted Keggin [PVnW12-nO40](n+3)- polyoxometallic anions. J. Phys. Chem. B 2005, 109(18), 8928-8934.

39. Bocharov, S.; Zhang, Z.; Beebe, T. P., Jr., and Teplyakov, A. V. Structure of a thin barrier film deposited from tetrakis-(dimethylamido)-titanium onto a Si(100) substrate. Thin Solid Films 2005, 471, 159-165.

38. Bocharov, S. and Teplyakov, A. V. Adsorption, ordering, and chemistry of nitrobenzene on Si(100)-2×1. Surf. Sci. 2004, 573, 403-412.

37. Bulanin, K. M.; Kong, M. J.; Pirolli, L.; Mathauser, A. T. and Teplyakov, A. V. Adsorption and thermal decomposition of diethyaluminum hydride on Si(100)-2×1.  Surf. Sci. 2003, 542, 167-176.

36. Wingrave, J. and Teplyakov, A. V. Infrared spectrometer attachment assembly for use with vacuum and high-pressure cells. J. Vac. Sci. Technol. A 2003, 21(5), 1800-1801.

35. Bocharov, S.; Mathauser, A. T. and Teplyakov, A. V. Adsorption and thermal chemistry of nitroethane on Si(100)-2×1. J. Phys. Chem. B. 2003, 107, 7776-7782.

34. Dmytrenko, O.; Huang, W.; Polenova, T. E.; Francesconi, L. C.; Wingrave, J. A. and Teplyakov, A. V. Effect of cations in infrared and computational analysis of vanadium-containing six-coordinate oxotungstates.  J. Phys. Chem. B. 2003, 107, 7747-7752.

33. Bocharov, S. and Teplyakov, A. V. Spectroscopic evidence for hydrogen diffusion through several-nanometers-thick titanium carbonitride layer on silicon. J. Am. Chem. Soc. 2003, 125, 7196-7197.

32. Mathauser, A. T. and Teplyakov, A. V. The effects of surface poisoning by HCl on cyclization processes on a Cu3Pt(111) surface. Surf. Sci. 2003, 523, 37-47.

31. Müller, T.; Flynn, G. W.; Mathauser, A. T.; Teplyakov, A. V. Temperature-programmed desorption studies of n-alkane derivatives on graphite: Desorption energetics and the influence of functional groups on adsorbate self-assembly. Langmuir 2003, 19, 2812-2821.

30. Bulanin, K. M.; Shah, A. G.; Fitzgerald, D. R.; Doren, D. J.; Teplyakov, A. V. Kinetically-favored adsorbate ordering: Hydrogen and iodine on the Si(100)-2×1 surface. J. Phys. Chem. B 2002, 106, 7286-7289.

29. Bulanin, K.; Shah, A. and Teplyakov, A. V. Infrared spectroscopy studies of iodoethane on Si(100)-2×1: Adsorption and thermal decomposition leading to adsorbate ordering. J. Chem. Phys. 2001, 115(15), 7187-7195.

28. Mathauser, A. T. and Teplyakov, A. V.  Naphthalene formation on Cu3Pt(111): dehydrocyclization of  4-phenyl-1-butene. Catal. Lett. 2001, 73(2-4), 207-210.

27. Mathauser, A. T.; He, H.; and Teplyakov, A. V.  Adsorption and thermally induced reactions of halocyclohexanes on a Cu3Pt(111) surface. Surf. Sci. 2001, 479, 213-223.

26. He, H.; Mathauser, A. T.; and Teplyakov, A. V.  Self-Limiting heterogeneous reactions: Bifunctional hydrocarbon on a bimetallic alloy surface. J. Phys. Chem. 2000, 104 (51), 12306-12314.

25. Kong, M. J.; Teplyakov, A. V.; Jagmohan, J.; Lyubovitsky, J. G.; Mui, C.; and Bent, S. F. Interaction of C6 cyclic hydrocarbons with a Si(100)-2×1 surface: adsorption and hydrogenation reactions. J. Phys. Chem. B 2000, 104, 3000-3007.

24. Gurevich, A. B.; Bent, B. E.; Teplyakov, A. V. and Chen, J. G. A NEXAFS investigation of the formation and decomposition of CuO and Cu2O thin films on Cu(100). Surf. Sci. 1999, 442, L971-L976.

23. Lal, P.; Noah, Y.; Kong, M. J.; Teplyakov, A. V. and Bent, S. F. Adsorption of ethylene on the Ge(100)-2 x 1 surface: Coverage and time-dependent behavior. J. Chem. Phys. 1999, 110 (21), 10545-10553.

22. Teplyakov, A. V.; Lal, P.; Noah, Y. A.; Bent, S. F.  Evidence for a Retro-Diels-Alder Reaction on a Single Crystal Surface: Butadienes on Ge(100). J. Am. Chem. Soc. 1998, 120 (29), 7377-7378.

21. Kong, M. J.; Teplyakov, A. V. and Bent, S. F. NEXAFS studies of adsorption and reaction of benzene on Si(100)-(2×1). Surf. Sci. 1998, 411, 286-293.

20. Teplyakov, A. V.; Kong, M. J. and Bent, S. F. Diels-Alder reactions of butadienes with the Si(100)-2×1 surface as a dienophile: vibrational spectroscopy, thermal desorption and near edge X-ray absorption fine structure studies. J. Chem. Phys. 1998, 108 (11), 4599-4606.

19. Teplyakov, A. V.; Bent, B. E.; Eng, J., Jr. and Chen, J. G. Vibrational mode-softening of alkanes on clean and modified Cu and Mo surfaces: absence of a simple correlation with thermal desorption temperatures. Surf. Sci. 1998, 399, L342-L350.

18. Gurevich, A. B.; Teplyakov, A. V.; Yang, M. X. and Bent, B. E. Synthesis, bonding and reactions of p-bonded allyl groups on Cu(100): allyl radical ejection. Langmuir 1998, 14 (6), 1419-1427.

17. Teplyakov, A. V.; Gurevich, A. B.; Garland, E. R. and Bent, B. E. Mechanism of dehydrocyclization of 1-hexene to benzene on Cu3Pt(111): identification of 1,3,5-hexatriene as a reaction intermediate. Langmuir 1998, 14 (6), 1337-1344.

16. Lusvardi, V. S.; Barteau, M. A.; Chen, J. G; Eng, J., Jr.; Frühberger, B. and Teplyakov, A. V. A NEXAFS investigation of the reduction and reoxidation of TiO2(001). Surf. Sci. 1998, 397, 237-250.

15. Yang, M. X.; Teplyakov, A. V. and Bent, B. E. Regioselectivity of deuterium atom addition to olefin monolayers on Cu(100). J. Phys. Chem. B 1998, 102 (16), 2985-2990.

14. Teplyakov, A. V.; Gurevich, A. B.; Yang, M. X.; Chen, J. G. and Bent, B. E. NEXAFS and TPD studies of molecular adsorption of hydrocarbons on Cu(100): segmental correlations with the heats of adsorption. Surf. Sci. 1998, 396, 340-348.

13. Teplyakov, A. V.; Kong, M. J. and Bent, S. F. Vibrational spectroscopic studies of Diels-Alder reactions with the Si(100)-2×1 surface as a dienophile. J. Am. Chem. Soc. 1997, 119, 11100-11101.

12. Teplyakov, A. V. Bonding and reactions of hydrocarbons and their fragments on single crystal surfaces of copper and copper-platinum alloy: identification of surface intermediates and reaction mechanisms. (1997), 274 pp. Ph. D. Thesis.

11. Teplyakov, A. V. and Bent, B. E. Mechanism of dehydrocyclization of 1-hexene to benzene on Cu3Pt(111). J. Phys. Chem. B 1997, 101, 9052-9059.

10. Kash, P. W.; Yang, M. X.; Teplyakov, A. V.; Flynn, G. W. and Bent, B. E. Chemical displacement of molecules adsorbed on surfaces: low temperature studies with application to surface reactions. J. Phys. Chem. B 1997, 101, 7908-7918.

9. Teplyakov, A. V. and Bent, B. E. Dehydrocyclization of 1-hexene to benzene on Cu3Pt(111).  Catal. Lett. 1996, 42 (1,2), 1-4.

8. Teplyakov, A. V. and Bent, B. E. Infrared spectroscopic study of the chemical displacement of hydrocarbon monolayers from a Cu(100) surface. Chem. Phys. Lett. 1996, 260, 65-70.

7. Lin, J.-L.; Teplyakov, A. V. and Bent, B. E. The effects of alkyl chain structure on carbon-halogen bond dissociation and b-hydride elimination by alkyl halides on a Cu(100) surface.  J. Phys. Chem. 1996, 100, 10721-10731.

6. Teplyakov, A. V. and Bent, B. E. Distinguishing direct and quasi-direct mechanisms for an Eley-Rideal gas-surface reaction: stereochemistry of H addition to cyclohexene on Cu(100). J. Chem. Soc. Faraday Trans. 1995, 91 (20), 3645-3654.

5. Teplyakov, A. V. and Bent, B. E. b-Hydride elimination from alkyl and cycloalkyl groups on Cu(100) surface: ring strain and planarity of the transition state. J. Am. Chem. Soc. 1995, 117, 10076-10087.

4. Netrusov, A.; Teplyakov, A.; Bessarabov, D. and Teplyakov V. Gas separation systems for biotechnology by integrated membranes with moving liquid carriers.  Conf. Adv. Biochem. Eng., Three-Day Symp., 2nd, 1994, 106-8.

3. Teplyakov, V.; Beckman, I.; Teplyakov, A. and Netrusov, A. Integrated membrane systems with moving liquid carriers for biogas separation in biotechnology. BHR Group Conf. Ser. Publ. 1993, 5 (3rd International Conference on Bioreactor and Bioprocess Fluid Dynamics, 1993), 315-322.

2. Beckman, I. N.; Bessarabov, D. G., Teplyakov, V. V. and Teplyakov, A. V. Integrated membrane systems with moving liquid carriers for multicomponent gas separation. BHR Group Conf. Ser. Publ. 1993, 3 (Effective Membrane Processes-New Perspectives), 297-306.

1. Beckman, I. N.; Gladkov, V. S.; Teplyakov, V. V.; Teplyakov, A. V. and Kuznetsov, L. P. Method of membrane-absorption separation of gas mixtures and the set up for.  Application for patent of the USSR, approval #1637850, BOID 53/22, 1991.