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Abstract: The third Marshall–Hicks–Allen rule of elasticity of derived demand
purports to show that labor demand is less elastic when labor is a smaller share
of total costs. As Hicks, Allen, and then Bronfenbrenner showed, this rule is not
quite correct, and actually is complicated by an unexpected negative relationship
involving labor’s share of total costs and the elasticity of substitution. The stan-
dard intuitive explanation for the exception to the rule presented by Stigler and
referenced in many textbooks describes a situation rather different than the one
described in the rule. The author presents an example that illustrates the peculiar
negative impact of labor’s share operating via the elasticity of substitution and
then explains why the unexpected relationship between labor’s share of total cost,
the elasticity of substitution, and the elasticity of labor demand holds.
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The third Marshall–Hicks–Allen rule of the elasticity of derived demand has
bedeviled labor economists for many decades. This rule purports to show that
the elasticity of labor demand is less when labor is a smaller share of total costs.
It is often referred to by the aphorism that “it is important to be unimportant,”
meaning that when labor’s share is small, the resulting demand curve will be more
inelastic, giving labor (or labor unions) more power to increase wages with less of
a reduction in employment. A common example contrasts the demand situation
facing an industrial union (large share) and a craft union (small share), with the
prediction that, ceteris paribus, the industrial union would face a more elastic
demand curve.

The problem is that this rule is not quite correct, a point that is not universally
recognized even among labor economists. It holds, as Hicks (1932) and then Allen
(1938) pointed out, only when the elasticity of final product demand (η) is greater
than the elasticity of substitution (σ ). The explanation by Stigler (1966) that is
included in two well-known labor economics textbooks (Ehrenberg and Smith
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2009 and Borjas 2008), is incorrect. It describes a situation rather different than
the one described in Marshall’s controversial third rule. As far as I can tell, no
straightforward and reasonably intuitive economic explanation exists.1

In an interesting article more than four decades ago, Bronfenbrenner (1961)
presented a clear historical account of the elasticity rules that focused on the
derivation of the rules from Marshall (1920) to Hicks’s Theory of Wages (1932,
Appendices 3 and 4) to Allen’s Mathematical Analysis for Economics (1938), with
special emphasis on the pesky third rule. But Bronfenbrenner deftly stepped aside
from explaining the rule, preferring to emphasize the related important influence
of labor’s share in determining the overall elasticity. He wrote that the “variation of
the elasticity of derived demand for a productive service with the relative weight of
that service in total cost is only a side issue. The important role . . . is in determining
the relative weights of η and σ“ (Bronfenbrenner 1961, 259).

I pick up where Bronfenbrenner left off, first explaining the problem of the third
rule and also its common, but incorrect, explanation. I then document the exception
to Marshall’s third law with a simple numerical example using a Cobb–Douglas
production function. In particular, I show that the output-constant response to a
wage change is negatively related to labor’s share for a given elasticity of sub-
stitution. Finally, I provide an economic explanation of why labor’s share affects
the impact of the elasticity of substitution on the elasticity of labor demand. The
explanation turns out to be relatively simple, turning on the relationship between
the share of labor in total costs and a firm’s cost-minimizing ratio of labor to capital
or, equivalently, on the common marginal rate of technical substitution (MRTS)
of firms facing the same input prices, but with different initial labor–capital ratios.

BACKGROUND

Marshall, and later Hicks and Allen, established four famous rules of the de-
terminants of the elasticity of derived factor demand, rules that have been taught
to generations of economics students.2 The first two rules, which are by far the
most famous, relate to the elasticity of final demand and the ease of substitution
in production, both of which increase the elasticity of derived demand. The fourth
relates to the elasticity of supply of the other factor or factors of production. This
rule is often treated as a minor issue—Allen ignored its role entirely. The third and
most controversial rule relates labor’s share in total cost to the elasticity of derived
demand. Marshall argued that labor demand was more inelastic when labor’s share
of total costs was smaller. The underlying intuition is that any given increase in
the wage will have a bigger impact on average cost and thus price when labor
is a more important share of total cost. For any given elasticity of final demand,
the impact on quantity demanded and eventually on labor demanded will then be
greater. Thus, it is “important to be unimportant,” where “important” means to
face a more inelastic demand curve and “unimportant” means to be a small share
of total cost. That much seems reasonable.

Unfortunately, as Hicks and then Allen showed, this third law is not strictly
true. It holds only if the elasticity of final demand is greater than the elasticity of
substitution. The issue is easiest to see in Allen’s version. The Allen equation for
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the elasticity of labor demand is ηL = (1−S)σ + S ηQ, in which ηL is the absolute
value of the elasticity of labor demand, S is the share of labor in total cost, σ is
the elasticity of substitution, and ηQ is the elasticity of final demand, also treated
as a positive number.3 Allen’s equation clearly shows that the elasticity of labor
demand is a weighted average of substitution and scale effects, represented by
σ and ηQ, respectively. Taking the derivative of ηL with respect to s reveals the
complication first discovered by Hicks using his far more complex formulation:
∂ηL / ∂S = ηQ − σ . This derivative is not unambiguously positive or negative, but
rather depends on the relative size of the elasticity of final product demand and
the elasticity of substitution. If ηQ < σ , it is apparently important to be important!
Note also, that ∂ηL/∂σ = (1−S) and ∂ηL / ∂ηQ = S, so that these effects depend
negatively and positively, respectively, on labor’s share.

It is no surprise that the elasticity of labor demand depends positively on the
elasticity of the demand for the final product, as Allen’s equation shows. The
positive impact of S through ηQ is also straightforward. A larger S means that
any increase in wages has a bigger effect on average cost and thus price, and
eventually, via ηQ on the amount of labor demanded.

It is also no surprise that the elasticity of labor demand depends on the elasticity
of substitution, because that has already been established by the second rule. But
the Allen equation suggests two puzzles about the role of labor’s share in the
elasticity of labor demand. First, why should labor’s share of total costs have
anything at all to do with the effect of the elasticity of substitution on the elasticity
of labor demand or, equivalently, why does the elasticity of substitution have
anything to do with the effect of labor’s share on demand elasticity? And, second,
even more unexpectedly, why is the effect negative? Why, for example, isn’t ηL =
(σ + SηQ) or even S(σ + ηQ)? Those relationships seem far more sensible. Indeed,
Bronfenbrenner (1961, 258) wrote that “Common sense appears to suggest that
a high elasticity of demand for the product and a high elasticity of substitution
between services should reinforce rather than offset each other in increasing the
‘importance of being unimportant’” (emphasis added).

I have never seen an adequate explanation for why this peculiar negative rela-
tionship holds, and I suspect that very few labor economists actually understand
it.4 Most labor economics textbooks do not include the qualification, which may,
frankly, be subtler than is necessary for many undergraduate audiences (see, with-
out assignment of any blame whatsoever, Hyclak, Johnes, and Thornton 2005, 51;
Hamermesh and Rees 1993, 146, and Reynolds, Master, and Moser 1998, 91).

Even when the exception is noted and addressed, it is not explained correctly.5

The most common explanation comes from Stigler in his Theory of Price (1966).
His explanation is reported virtually identically with attribution in long footnotes
in two well-regarded U.S. labor economics textbooks (Ehrenberg and Smith 2009,
100; Borjas 2008, 131). This account involves carpenters of identical skill who
are classified by their ancestry, e.g., “African-, Asian-, German-, Hispanic-, Irish-,
and Italian-American” (Ehrenberg and Smith, 2009, 100). If each such group was
treated as a separate factor of production, its share of total cost would be small, but
because so many perfect substitutes exist, its elasticity of substitution would be
very high (presumably ∞). Thus, if any one carpenter group attempted to increase
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its own wage, demand would be highly elastic. In contrast, if all the groups were
treated as one factor of production, they would account for a larger share of total
cost, but because they face fewer substitutes in production, their demand curve
would be less elastic. Stigler’s (1966, 244) key point is, in fact, that the elasticity of
substitution typically varies along with labor’s share, with a small share implying
greater substitutability.

This explanation is perfectly correct as an explanation for why a factor for
which perfect production substitutes exist would be likely to face an elastic de-
mand curve, courtesy of the elasticity of substitution. But it is not an explanation
for Marshall’s law in the form presented by Allen or Hicks. In Allen’s equa-
tion, the elasticity of substitution is held constant as labor’s share varies: ηL =
(1−s)σ + SηQ and ∂ηL/∂S = ηQ−σ . Stigler’s verbal example represents a dif-
ferent formula for the elasticity of labor demand, one in which σ is replaced by
σ (s), with σ ′ < 0. The corresponding Stiglerian demand elasticity–labor share
derivative is ∂ηL/∂s = ηQ−σ + (1−S)σ ′. The third term is negative and thus
makes the relationship more likely to be negative; in this example, it is impor-
tant to be important. In fact, one might imagine from the example and formula
that the relationship between labor’s share and demand elasticity was more often
negative than positive. Is it important to be unimportant or to be important? And
why?

ANALYSIS

In this section, I provide a simple numerical example using a Cobb–Douglas
production function to show that the peculiar negative impact of labor’s share
on the elasticity of labor demand via the elasticity of substitution result is, in
fact, true. There is no doubt that it is true, because that is what Allen’s equation
(and Hicks’s more complicated equation) reveals. It is instructive and reassuring,
nevertheless, to see an example that confirms it with concrete and easily understood
computations. I then present two complementary explanations that explain why it
is true. The Cobb–Douglas case is easy to work with, but it does not restrict the
applicability of the explanation.

A Numerical Example

Start with a Cobb–Douglas production function Q = La K(1−a). The correspond-
ing cost-minimizing choices of L and K must always satisfy

[a/(1 − a)] × (K∗/L∗) = w/r (1)

in which K∗ and L∗ represent the best choices of L and K and the left hand
side of this equation is the MRTS. Rewriting the cost-minimization condition to
emphasize the labor-capital ratio,

L∗/K∗ = [a/(1 − a)] × (r/w) (2)

440 JOURNAL OF ECONOMIC EDUCATION



For simplicity and without any loss of generality, let r / w = 1.0 and consider
labor demand for two production functions, one with a = 0.8 and the other with
a = 0.2. For a = 0.8, if follows from Equation (2) that L∗ = 4K∗; conversely,
for a = 0.2, L∗ = K∗/4. In the first case, labor’s share of total cost is 80 percent
and in the second case, it is 20 percent. In a firm whose production function has
a larger value of a, labor’s share will always be greater, as will the labor–capital
ratio. In this example, labor’s share of total cost and labor’s share of total input are
equivalent because the factor prices are equal. If w �= r, labor’s share of total cost
would not be equal to labor’s share of total input, but it would be proportional to
it.

Continuing with the case of a = 0.8 and w / r = 1.0, let K∗ = 10. Using
the cost-minimization condition of Equation (2), it follows that L∗ = 40. This is
shown in the first row of Table 1 as the Baseline case. The corresponding output
is 30.314 and, of course, L∗/K∗ = 4. Now let w increase by 10 percent, so that r /
w falls by 10 percent. Because σ = 1.0 for a Cobb–Douglas production function,
L∗/K∗ will fall by 10 percent, in this case from L∗/K∗ = 4 to L∗/K∗ = 3.6. Using
the production function and the necessary relationship between L∗ and K∗ for
cost minimization yields the corresponding new choice point along the original
isoquant, L∗ = 39.166 and K∗ = 10.879. It can readily be verified that this input
bundle yields the original output and satisfies the new necessary labor–capital
ratio (L∗/K∗ = 3.6). The resulting percentage change in L∗, shown in the table,
is −2.1 percent. If instead, w decreased by 10 percent, the new cost-minimizing
labor–capital ratio would be 4.4, and the corresponding input choices would be L∗

= 40.770 and K∗ = 9.266. Now the percentage change in L∗ is 1.9 percent. These
entries are also shown in the table.

Now look at the bottom portion of the table for the case where labor’s share
is small (a = 0.2). In the Baseline situation, L∗ = 10 and K∗ = 40, exactly the
reverse of the original case. Output is exactly the same as above. If w increased
by 10 percent, r / w would fall by 10 percent and L∗/K∗ would fall by 10 percent
from.25 to.225. Now, as seen in the table, L∗ will decrease from 10 to 9.192
and K∗ will increase to 40.852. This is a −8.1 percent change in L∗. Similarly,
if w decreased by 10 percent, r / w would increase by 10 percent and the new
labor–capital ratio would be.275. The corresponding input choices are 10.792 and
39.245. L∗ increases by 7.9 percent.

Interestingly and appropriately, the exact same pattern holds in reverse for the
other input. Its proportionate change is large when its share, proxied by (1−a), is
small as in Case 1 and smaller when its share is larger, as in Case 2. These impacts
are also shown in Table 1.

The arithmetic in the table indeed establishes that S does interact with σ in
an unexpected way in determining the elasticity of derived labor demand. As a
decreased from 0.8 to 0.2, decreasing labor’s share of total cost proportionately,
the output-constant and elasticity of substitution-constant employment effect of a
10 percent increase in the wage rate increased from approximately 2 percent to
8 percent. Thus, when S is larger, the cost-minimizing, output-constant response
to a given change in the wage rate is smaller in percentage terms. As far as this
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TABLE 1. The Impact of Labor’s Share on Labor Demand Elasticity via the
Elasticity of Substitution

Variable S L∗/K∗ L∗ K∗ Q

Case 1: labor’s share (large)a

Baseline 0.8 4 40 10 30.314
10% increase in w 0.8 3.6 39.166 10.879 30.314
Percent change after increase 10.0 −2.1 8.8
10% decrease in w 0.8 4.4 40.770 9.266 30.314
Percent change after decrease −10.0 1.9 −7.3

Case 2: labor’s share (small)b

Baseline 0.2 0.25 10 40 30.314
10% increase in w 0.2 0.225 9.192 40.852 30.314
Percent change after increase 10.0 −8.1 2.1
10% decrease in w 0.2 0.275 10.792 39.245 30.314
Percent change after decrease –10.0 7.9 −1.9

Note. L∗/K∗ = (a/(1 − a)) × (r/w); r/w = 1; σ = 1.
aProduction function for Case 1 is Q = L.8K.2.
bProduction function for Case 2 is Q = L.2K.8.

portion of the elasticity formula is concerned, it is definitely important to be
important.

Explanation

What is happening to create this unexpected effect? The explanation is some-
thing relatively mundane, namely the arithmetic of percentage changes. For a
given w and r, labor’s share and the labor–capital ratio are monotonically pos-
itively related, so that when labor’s share is high, so, too, is the labor–capital
ratio. This, in turn, necessarily means that the amount of capital is relatively
small. Thus, when L and K are adjusted following a wage change so as to
make the labor–capital ratio equal the new factor price ratio, a small abso-
lute change in K makes a big impact on the labor-capital ratio. As a result,
only a small change in L is required for cost-minimization. And because
the amount of labor is large to begin with, this is a small percentage
change.

But when labor’s share is small, K∗ is necessarily large. Now a change in the
labor–capital ratio cannot be as easily achieved by changes in K, but require rela-
tively larger changes in L as well. Because L∗ was originally small, the percentage
change is larger.

Another and perhaps easier way to understand what is happening is to think in
terms of the MRTS. Let the two cases correspond to two different firms facing
the same factor prices and with the same elasticity of substitution. Because their
production functions differ, they choose different input combinations, exactly as
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FIGURE 1. Input adjustments to a change in factor prices when the share of
labor in total costs differs.

in the example above. Figure 1 illustrates this. In the current example, the MRTS
equals one, because w = r. Firm 1 chooses Point A, and Firm 2 chooses Point B.

But both firms necessarily have the same MRTS at their optimal choice, because
they face the same input prices. Whatever the change in w is, the responses of the
two firms will therefore be identical in terms of absolute changes. For example,
for a very small change in w in the vicinity of the current choices, �K∗ = −�L∗.
This is approximately true in Table 1. In Case 1, when w increases by 10 percent,
L∗ falls by 0.834 and K∗ increases by 0.879; in Case 2, the corresponding changes
are L∗ = −0.818 and K∗ = 0.852. Whatever the �L∗ is, it will always be a larger
percentage change when L∗ is smaller, which corresponds to the case where labor’s
share is smaller, and a smaller percentage change when L∗ is larger, which is the
case where labor’s share is large. Thus, Firm 1 moves to A′ and Firm 2 moves to
B′. The percentage change in L∗ is much smaller for Firm 1 (large initial labor
share) than for Firm 2 (smaller initial labor share).

Other Considerations

The arithmetic was simplified in these examples by setting w = r. But the result
would hold for any relationship between w and r. No matter what the factor price
ratio is, when labor’s share of total cost is greater, so is the labor–capital ratio,
holding w / r constant. That is the critical factor. The share of labor in total cost is
monotonically related to the labor–capital ratio.

The Cobb–Douglas production function used in the example has constant re-
turns to scale and an elasticity of substitution equal to one. Neither of these
properties affects the results here. With other than constant returns to scale, the
cost-minimization condition in Equation (1) would have a second parameter b
rather than (1−a), but all the arithmetic would go through. Similarly, any other
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value for σ would change the absolute size of the factor adjustments, but not the
relative percentage changes.

CONCLUSION

The examples I use show that the impact of labor’s share of total cost on the
elasticity of derived demand does depend negatively on the elasticity of substi-
tution. When labor’s share is greater, the cost-minimizing output-constant and
the elasticity of substitution–constant responses to a given change in the wage
rate are smaller in percentage terms, an effect that reduces the elasticity of labor
demand. As far as this portion of the elasticity formula is concerned, it is defi-
nitely important to be important. The standard textbook explanation of this odd
relationship by Stigler is not correct, because in his example, σ varies with S, a
relationship that is certainly plausible, but not in the spirit of the Hicks–Marshall
rule.

The unexpected relationship occurs because labor’s share is equivalent to or
proportional to the labor–capital ratio and because all firms, facing the same
factor prices, have the same MRTS at their cost-minimizing choices, even though
the choices themselves differ. When the labor–capital ratio is large, the resulting
absolute change in the amount of labor necessary to reachieve cost-minimization
following a change in factor prices is a small percentage of the original. When
the labor–capital ratio is smaller, the identical absolute change in the amount of
labor is a larger percentage of the original. When labor is “important” (labor’s
share is large), the impact of the elasticity of substitution is attenuated by the
“unimportance” of the other input. But when labor is “unimportant,” the percentage
impact of the elasticity of substitution is greater.

As far as the total impact of labor’s share of total cost on the elasticity of
labor demand, that depends, exactly as Hicks, Allen, and Bronfenbrenner noted,
on whether or not the elasticity of final demand is greater than the elasticity
of substitution. If that is true, then an increase in labor’s share makes the labor
demand curve more elastic. If it does not hold, then an increase in labor’s share
makes the labor demand curve less elastic. A priori, it is not at all clear whether it
is “important to be unimportant” or “important to be important.”

NOTES

1. This article was inspired when my graduate students in labor economics asked me for an explanation.
Despite having taught labor economics for nearly three decades, I had no explanation whatsoever
to offer, and I could not find one in any standard labor economics sources or on a Web search. This
provides additional evidence that teaching does give rise to research, as asserted by Becker and
Kennedy (2006).

2. Bronfenbrenner (1961) showed that the derivations and explanations of the various authors are not
identical, although the resulting rules are. Marshall’s rule relating to ease of substitution predated
the development of the elasticity of substitution, and thus was not originally stated in those terms.

3. Bronfenbrenner (1961) noted that Allen’s equation is a special case of the far more complicated
equation from Hicks, corresponding to a situation in which the supply of the other factor of
production is perfectly elastic. Analytically, this case might correspond to the demand response of
a firm that takes the price of the other input as given or of a competitive industry for which the other
factor is not a specialized input. In either case, the supply of the other input is perfectly elastic,
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so that changes in input choices will not have effects on the price of the other factor that must be
considered.

4. A Google search of the Hicks–Marshall rules uncovers some very nice lecture notes, but no con-
vincing explanations. The account by Hicks (1961) is not very helpful. This particular relationship
is possibly the only element of labor demand not explained in Hamermesh (1993, 24–25, n. 2,
which refers back to Stigler).

5. Bronfenbrenner (1961, 258) showed that neither Hicks nor Robertson, both of whom offered
explanations, got it correct.
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