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Abstract

Some economic models like the cash-in-advance model of money, the overlapping gen-
erations model and a model of credit with limited commitment may have the property
that the dynamical system characterizing equilibria in the model are multi-valued going
forward in time, but single-valued going backward in time, i.e., the model or dynamical
system has backward dynamics. In such instances, what does it mean for a dynamical
system (set-valued) to be chaotic? Furthermore, under what conditions are such dy-
namical systems chaotic? In this paper, I provide a definition of chaos that is in the
spirit of Li and Yorke for a dynamical system with backward dynamics. I utilize the
theory of inverse limits to provide sufficient conditions for such a dynamical system to
be Li-Yorke chaotic.

Keywords: cash-in-advance, overlapping generations, limited commitment, Li-Yorke
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1 Introduction

The equilibrium of a dynamic economic model can often be characterized as a trajectory

generated by a dynamical system. Many nonlinear dynamical systems are single-valued

moving forward, but multi-valued going backward, i.e., the system is not invertible. How-

ever, in economics there are dynamical systems with the opposite property, namely dynamics

that are multi-valued going forward, but are single-valued going backward. When this phe-

nomenon occurs, Medio and Raines (2007) say the model or dynamical system has backward

dynamics. Three such models that may have backward dynamics include the overlapping

generations (OG) model, the cash-in-advance (CIA) model and models of credit with lim-

ited commitment.1 Typically, the problem of backward dynamics is either ignored by using

a local analysis or avoided by analyzing the model with the single-valued backward map.

However, using a local analysis, some potentially interesting equilibria may be ignored. And

as Medio (1992, pp. 222–23) notes, the backward map solution is not entirely satisfactory

either because the backward map gives trajectories that go backward into the infinite past,

whereas equilibria are trajectories that lead off into the infinite future.

For certain properties of the dynamical system (e.g., establishing periodic orbits), the

backward map is entirely satisfactory. However, it is less clear that one can use the back-

ward map for other properties of the multi-valued forward map that may be of interest like

Li-Yorke chaos. To be more concrete, suppose the set of equilibria in the model include

trajectories {x1, x2, . . .} where xi = f(xi+1) and f : I → I where I is a closed interval of

the real line. If one can establish that f has a 3-cycle, then the backward map f is chaotic

in the sense of Li-Yorke. In this case, the Li-Yorke chaos is a property of forward orbits of

backward map f which run backward in time. What, if anything, does a 3-cycle of f say

about the backward orbits of f which run forward in time and correspond to equilibria in

the model.

The term chaotic when applied to dynamical systems has been defined in several non-

equivalent ways.2 The focus of this paper is on one of the first and more commonly used

definitions of chaos, namely that of Li and Yorke (1975). In this celebrated paper, Li and

Yorke (1975) show that a cycle of period 3 implies chaos as they define it. This condition is

sufficient, but not necessary and can be weakened to any cycle of period n not equal to 2k

for some k ≥ 0. In this paper, I offer a definition of Li-Yorke chaos for dynamical systems

1See Grandmont (1985) for the OG model, Michener and Ravikumar (1998) for the CIA model and Gu
and Wright (2011) for a model of credit with limited commitment.

2See, for example Robinson (1995, pp. 83–84).
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with backward dynamics and provide sufficient conditions for such a dynamical system to

be chaotic. I utilize the theory of inverse limits to establish the two main results:

• Let f : I → I be continuous with I : [a, b] ⊂ R with a < b. If f has a periodic point of

order not equal to 2k for k = 0, 1, 2, . . ., then f−1 is chaotic in the sense of Li-Yorke.

Corollary: if f has 3-cycle, then f−1 is Li-Yorke chaotic.

• Let f : X → X is continuous, where X is compact metric. If f has positive topological

entropy, then f−1 is Li-Yorke chaotic.

The inverse limit of a dynamical system is a subset of an infinite dimensional space (e.g.

the Hilbert cube) where each point in the inverse limit corresponds to a backward solution

(backward orbit) of the dynamical system. Using the backward map f from say the CIA

model as our dynamical system, a point in the inverse limit, being a backward orbit of f ,

corresponds to a forward orbit in the model. The backward map f can be used to induce

a homeomorphism F on the inverse limit space. The dynamical properties of this induced

homeomorphism are closely related to those of the backward map. The dynamical properties

of the inverse of this homeomorphism F−1 (a single-valued function) are closely related to

those of f−1 (the forward multi-valued dynamical system).

The use of inverse limits to analyzing models with backward dynamics is a relatively

new approach. Medio and Raines (2007, 2006) use inverse limits to analyze the long-run

behavior of an OG model. Even though the forward dynamics are multi-valued, they show

that “typical” long-run behavior of equilibria in the model corresponds to an “attractor”

of the shift map on the inverse limit space. In particular, they persuasively argue that

these equilibria associated with an attractor should be the ones of interest in models with

backward dynamics since these are the ones that one can expect to occur. Kennedy et al.

(2007) investigate the topological structure on the inverse limit space associated with the

CIA model of Lucas and Stokey (1987). The complexity of the dynamical system and the

complexity of the inverse limit space are connected.3 In economics, models with backward

dynamics do occur, and it is important to have a framework consisting of tools and results

for analyzing such systems.

The paper is organized as follows. To motivate the problem, in section 2 I show that the

CIA model, OG model and a credit model with limited commitment may have an implicitly-

defined difference equation characterizing equilibria that is sometimes multi-valued forward

in time, but single-valued going backward in time, i.e., these models may exhibit backward

3See for example, Ingram and Mahavier (2004).
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dynamics. In section 3, I discuss inverse limits and the induced homeomorphism on this

space by the dynamical system. I also define Li-Yorke chaos for a multi-valued dynamical

system and provide sufficient conditions for the multi-valued forward dynamics to be Li-Yorke

chaotic. I conclude in section 4.

2 Models with Backward Dynamics

Some models in economics have the property that the dynamical system characterizing the

equilibrium conditions is multi-valued going forward in time, but single-valued going back-

ward in time, i.e., the model has backward dynamics. To be more concrete, an equilibrium

in the model must satisfy an implicitly-defined difference equation G(xt+1, xt) = 0. Given

xt there is more than one value for xt+1 that satisfies G(xt+1, xt) = 0. However, given xt+1,

there is a unique value for xt satisfying G(xt+1, xt) = 0, i.e., one can solve for the backward

map xt = F (xt+1). In this section I briefly discuss three models that may exhibit backward

dynamics.

2.1 Cash-in-Advance Model of Money

The model is the standard endowment CIA model of Lucas and Stokey (1987). I closely

follow the exposition of Michener and Ravikumar (1998), hereafter [MR]. Since our intent is

only to show that the model has backward dynamics and that for certain parameter values,

the backward map is chaotic, I will focus on a particular family of utility functions and

parameterizations used in [MR].4 It is an endowment economy with both cash and credit

goods. There is a representative agent and a government. The government consumes nothing

and sets monetary policy using a money growth rule.

The household has preferences over sequences of the cash good (c1t) and credit good (c2t)

represented by a utility function of the form

∞
∑

t=0

βtU(c1t, c2t), (1)

with the discount factor 0 < β < 1. The utility function is assumed to take the following

form:

U(c1, c2) :=
c1−σ
1

1 − σ
+

c1−γ
2

1 − γ
,

with σ > 0 and γ > 0. To purchase the cash good c1t at time t the household must have

cash mt. This cash is carried forward from t− 1. The credit good c2t does not require cash,

4See Michener and Ravikumar (1998) for more details and a more general framework.
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but can be bought on credit. The household has an endowment y each period that can be

transformed into the cash and credit goods according to c1t + c2t = y. Since this technology

allows the cash good to be substituted for the credit good one-for-one, both goods must sell

for the same price pt in equilibrium and the endowment must be worth this price per unit

as well.

The household seeks to maximize (1) by choice of {c1t, c2t, mt+1}
∞
t=0 subject to the con-

straints c1t, c2t, mt+1 ≥ 0,

ptc1t ≤ mt, (2)

mt+1 ≤ pty + (mt − ptc1t) + θMt − ptc2t, (3)

taking as given m0 and {pt, Mt}
∞
t=0. The money supply {Mt} is controlled by the government

and follows a constant growth path Mt+1 = (1+θ)Mt where θ is the growth rate and M0 > 0

given. Each period the household receives a transfer of cash from the government in the

amount θMt. A perfect foresight equilibrium is defined in the usual.

Let xt := mt/pt denote the level of real money balances and c be the unique solution to

U1(x, y − x) = U2(x, y − x). If the cash-in-advance constraint (2) binds, then c1t = xt. If

not, then c1t = c. It then follows that c1t = min[xt, c] for all t. [MR] use this relationship to

get a difference equation in x alone that characterizes equilibria in the model:

xtU2(min[xt, c], y − min[xt, c]) =
β

1 + θ
xt+1U1(min[xt+1, c], y − min[xt+1, c])

or

B(xt) = A(xt+1), (4)

where

B(x) := xU2(min[x, c], y − min[x, c]),

A(x) :=
β

1 + θ
xU1(min[x, c], y − min[x, c]).

The function B is invertible so one can always solve for the backward map f := B−1 ◦ A

giving xt = f(xt+1). Whether or not the dynamics going forward are multi-valued depends

on whether or not A(·) is invertible. In one parameterization, [MR, p. 1129] set β = 0.98,

σ = 0.5, γ = 4, y = 2 and consider θ equal to 0, 0.5 and 1.0. In this case the function A is

not invertible and there exists an invariant set [xl, xh] such that the the backward map has

a three cycle. The backward map for this parameterization (with θ = 0) is in Figure 1. One

sees that for this parameterization, the CIA model has backward dynamics.
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Figure 1: Backward map f : [xl, xh] → [xl, xh] from the cash-in-advance model.
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2.2 Overlapping Generations Model

In this subsection I describe the basic overlapping generations model to illustrate the possi-

bility of backward dynamics in this model as well.5 Consider a discrete time economy with

constant population equally divided into two equally numerous cohorts, labeled “young” and

“old .” At the beginning of each period t a new cohort is born and lives for two periods

(being “young” at t, and “old” at t+1). At t = 0, it is assumed that an “old” cohort already

exists. Because individuals in each class are assumed to be identical, one can describe the

situation in terms of “the young (old) agent.” There is no production, but fixed amounts

of the homogeneous, perishable consumption good are distributed at the beginning of each

period to young and old.

Let ct ≥ 0 be the young agent’s consumption at time t, and let gt ≥ 0 be the old agent’s

consumption at time t. Let w0 ≥ 0 and w1 ≥ 0 be the young and old agent’s endowment

respectively of the perishable good (there is no production). Let ρt > 0 be the interest rate

at time t, i.e. the exchange rate between present and future consumption. Define the utility

functions by

U(ct, gt+1) := u1(ct) + u2(gt+1), (5)

with u′i(·) > 0 and u′′i (·) ≤ 0 for i = 1, 2 (the same for all agents).

5The OG model literature is vast. Some relevant papers include Benhabib and Day (1982), Gale (1973)
and Grandmont (1985). See Azariadis (1993) for more references and a text-book exposition of the model.

6



The young agent’s problem is to maximize (5) by choice of {ct, gt+1} subject to the

intertemporal budget constraint ct + gt+1/ρt ≤ w0 + w1/ρt and non-negativity constraints

ct, gt+1 ≥ 0 taking {w0, w1, ρt} as given. The market-clearing condition (for all t):

ct + gt = w0 + w1. (6)

A competitive equilibrium is defined in the usual way as a collection of sequences of

{ct, gt}
∞
t=0 and {ρt}

∞
t=0 satisfying optimality (each agent’s utility maximization problem is

solved) and the market-clearing condition (6). From the first-order conditions of the young

agent’s problem and the market-clearing condition (6), it is clear that an equilibrium in the

model is an infinite sequence of numbers {gt} satisfying 0 ≤ gt ≤ w0 + w1 and the equation:

H(gt+1, gt) := U(gt+1) + V(gt) = 0, (7)

where U(g) := u′2(g)(g − w1) and V(g) := u′1(w0 + w1 − g)(w1 − g).

Whether or not from (7) one can derive a difference equation moving forward in time

depends on whether the function U is invertible. Consider the following specific example:

u1(c) = c; u2(g) = ag − (b/2)g2, (8)

with a and b positive constants. Furthermore, set w0 > 0, w1 = 0, and a = b. In this case,

U is not invertible and one gets

gt = Fµ(gt+1) := µgt+1(1 − gt+1). (9)

The function Fµ is the much-studied “logistic map” in dynamical systems (see Figure 2).

Note that this map is typically multi-valued going forward. However, the dynamics are

single-valued going backward in time (given gt+1 there is a unique gt that satisfies (9)). One

sees that for this parameterization, the OG model has backward dynamics. For µ = 4, Fµ is

chaotic on the entire interval [0, 1].

2.3 Credit Model with Limited Commitment

In Gu and Wright (2011), time is discrete and each period is divided into two sub-periods.

There are two types of agents (each type has measure 1) and two types of goods. Type 1

consumes good 1 but produces good 2. Type 2 consumes good 2 but produces good 1. Both

goods are produced in the first sub-period. Good 1 is consumed in the first sub-period and

good 2 is consumed in the second sub-period. A type 1 consumer who produces y units good
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Figure 2: Backward map Fµ : [0, 1] → [0, 1] with µ = 4 (a = b = 4).
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2 delivers y units of good 2 in the second sub-period. During a given period, utility over

(x, y) (goods 1 and 2 respectively) are given by

U1(x, y) and U2(x, y)

with U j(0, 0) = 0 (normalization), strictly increasing in the consumption good, strictly

decreasing in the production good and twice differentiable. In the second sub-period, a type

one agent can choose not to deliver y and instead consume the output with a payoff λy added

to the utility U1(x, y). If a type 1 chooses not to deliver, then with probability π the type 1

agent goes to autarky (receiving 0 utility forever).

Let V j
t be the expected (lifetime) utility of agent of type j at the beginning of period t

entering into a contract (xt, yt). If contracts are honored, then

V 1
t = U1(xt, yt) + βV 1

t+1,

V 2
t = U2(xt, yt) + βV 2

t+1.

Participation constraints are given by

U1(xt, yt) ≥ 0 and U2(xt, yt) ≥ 0. (10)

The repayment constraint for type 1 is

λyt + (1 − π)βV 1
t+1 ≤ βV 1

t+1.
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Define

φt :=
βπ

λ
V 1

t+1.

Then the repayment constraint for type 1 can be written as

yt ≤ φt. (11)

If contracts are honored, one gets the following recursive expression for φ:

φt−1 =
βπ

λ
U1(xt, y1) + βφt. (12)

Gu and Wright (2011) model two different types of market structures: generalized Nash

bargaining and Walrasian price taking. The Nash bargaining problem is the following:

max
x,y

U1(x, y)θU2(x, y)1−θ,

subject to (10) and (11). Let (xN , yN) solve the Nash bargaining problem. Then the neces-

sary first-order conditions to the Nash bargaining problem without the repayment constraint

are:

θU1
x(xt, yt)U

2(xt, yt) + (1 − θ)U1(xt, yt)U
2
x(xt, yt) = 0, (13)

θU1
y (xt, yt)U

2(xt, yt) + (1 − θ)U1(xt, yt)U
2
y (xt, yt) = 0. (14)

If φt ≥ yN , then xt = xN and yt = yN can be implemented. If φt < yN , then yt = φt and

using yt = φt in equation (13), one can solve for xt which defines a function xt = h(φt).

To recap, what matters for (xt, yt) in equilibrium is how φt compares to yN (the uncon-

strained allocation):

yt =

{

φt if φt < yN

yN if φt ≥ yN and xt = h(yt). (15)

Note that yt := y(φt) is continuous, but not differentiable at φt = yN .

An equilibrium is defined as a bounded sequence of non-negative credit limits {φt}
∞
t=1

and contracts {xt, yt}
∞
t=1 satisfying (15) given {φt}

∞
t=1 and the sequence {φt}

∞
t=1 satisfies (12).

One can simplify these conditions to get the following characterization: equilibria correspond

to non-negative and bounded sequences {φt}
∞
t=1 that satisfy:

φt−1 = f(φt) :=

{

βπ
λ

U1(h(φt), φt) + βφt if φt < yN

βπ
λ

U1(xN , yN) + βφt otherwise
. (16)

Note that f gives the backward dynamics of φ and the model has backward dynamics if f is

not invertible.
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Gu and Wright (2011) provide numerical examples using the following specific utility

functions:

U1(x, y) :=
(x + b)1−α − b1−α

1 − α
− y and U2(x, y) := y −

Ax1+γ

1 + γ
.

Example 5 from their paper has α = 2.25, b = 0.082, A = 1.3, β = 0.81, π/λ = 40/3,

θ = 0.01, γ = 0. Under Nash bargaining, one gets a steady state φ∗ = 16.65, yN = 17.14

along with a three cycle φ1 = 15.73, φ2 = 17.094 and φ3 = 18.93. The backward map f for

this parameterization is in Figure 3. Note that f is not invertible so the model has backward

dynamics. Moreover, a period 3 for f implies that the dynamics are Li-Yorke chaotic going

backward in time.

Figure 3: Backward map f from the credit model of Gu and Wright (2011).
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2.4 Concluding Remarks

Having illustrated that there are economic models with backward dynamics, two questions

naturally arise (1) what does it mean for a multi-valued dynamical system with backward

dynamics to be chaotic? and (2) how does one determine if such a system is chaotic? I

address these two questions in the next section.
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3 Li-Yorke Chaos for Dynamical Systems

with Backward Dynamics

In this section, I extend the definition of Li-Yorke chaos to a model with backward dynamics.

I use the theory of inverse limits to provide sufficient conditions on the backward map to

imply the multi-valued dynamical system going forward in time is Li-Yorke chaotic. For the

case where the state space is a compact interval, I show that period 3 for the backward map

implies Li-Yorke chaos for the multi-valued dynamical system going forward.

3.1 Inverse Limits

Let X be a nonempty compact metric space with metric d and suppose f : X → X is a

continuous function. In the context of the economic model, one should think of X as the

state space and f as the backward map. Let X∞ be the infinite product of X with itself

endowed with the usual product topology. Recall that the product topology is generated

by the following basic open sets. Let {u1, u2, . . . , un} be a finite collection of open sets in

X. Define < u1, u2, . . . un >:= {x = (x1, x2, . . .) ∈ X∞ : xi ∈ ui for 1 ≤ i ≤ n}. The

collection B := {< u1, u2, . . . un > : {u1, u2, . . . un} is a finite collection of open sets in X}

is the collection of basic open sets. For a metric on X∞ I will use the following function

d̃ : X∞ → R+ given by

d̃(x,y) :=

∞
∑

i=1

d(xi, yi)

2i−1
.

The product topology is compatible with the topology generated by the metric d̃. Note the

following standard results from topology: (1) If X is a metric space, then X∞ is a metric

space; and (2) If X is compact, then X∞ is compact.

Let N denote the natural numbers. The space X is called the factor space and the

function f is called the bonding map. The pair (X, f) is called an inverse system. The set

of points

lim
←−

(X, f) := {x = (x1, x2, . . .) ∈ X∞ | xi = f(xi+1) for i ∈ N},

is the inverse limit of the inverse system (X, f). If m ∈ N, the map πm : lim
←−

(X, f) → X

defined by πm(x) = xm is called the projection map (or the mth projection map).

Note that lim
←−

(X, f) is a subset of X∞ and each point in the inverse limit corresponds to

a backward solution to the dynamical system f : X → X. Note that since f is the backward

map from an economic model, the points in the inverse limit space correspond to forward

solutions of the implicit difference equation characterizing an equilibrium in the model (i.e,
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backward orbits of the backward map). In other words, the set of equilibria in the model is

an inverse limit space.

Let Y := lim
←−

(X, f). A natural map is induced on the inverse limit space by the bonding

map f : for x = (x1, x2, . . .) ∈ Y , define

F (x) ≡ F ((x1, x2, . . .)) := (f(x1), f(x2), . . .) ≡ (f(x1), x1, x2, . . .).

The induced map F is a homeomorphism from Y onto Y . The inverse σ := F−1 of F ,

is then defined by σ(x) ≡ σ((x1, x2, . . .)) := (x2, x3, . . .). The map σ is called the shift

homeomorphism. Thus, the pair (Y, F ) forms a dynamical system that runs both forward

and backward. This is one of the main advantages of the inverse limit approach to backward

dynamics. By treating an equilibrium in the model as a single point in a larger space, one

can gain insight into the dynamics of f−1 (which is multi-valued) by analyzing the shift map

σ on Y .

3.2 Chaos for Dynamical Systems with Backward Dynamics

When confronted with a model with backward dynamics, what does it mean to say the model

is Li-Yorke chaotic? Li-Yorke chaos requires the existence of a scrambled set :

Definition 1. Suppose X is a compact metric space and f : X → X is continuous and

δ ≥ 0. S ⊂ X is a scrambled set of f such that for any x, y ∈ S, x 6= y and any periodic

point p of f :

lim sup
n→∞

d(fn(x), fn(y)) > δ, (17)

lim inf
n→∞

d(fn(x), fn(y)) = 0, (18)

lim sup
n→∞

d(fn(x), fn(p)) > δ. (19)

If δ > 0, S is called a δ-scrambled set of f .

Definition 2. The function f is called chaotic in the sense of Li-Yorke (Li-Yorke chaotic)

if f has an uncountable scrambled set.

Next, I define a dynamical system as a collection of trajectories and then extend the

notion of a scrambled set an Li-Yorke chaos to to this collection of trajectories.

Definition 3. Let X be a compact metric space and X∞ : {x1, x2, . . . |xi ∈ X}, the D ⊂ X∞

is a dynamical system. We say that f generates D if for each x1, x2, . . . ∈ D we have
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xi+1 = f(xi) for i ∈ N. We say that f−1 generates D if xi = f(xi+1) for i ∈ N. We say that

x ∈ D is periodic, if there exists an n ∈ N such that x = σn(x). The period of a periodic

point x is the smallest k ∈ N such that σk(x) = x.

Consider the following definition of scrambled set for D:

Definition 4. Let X be a compact metric space and X∞ := {x1, x2, . . . |xi ∈ X}, the

D ⊂ X∞ and δ ≥ 0. S ⊂ D is a scrambled set of D such that for any x, y ∈ D, x 6= y and

any periodic point p of D:

lim sup
n→∞

d(πn(x), πn(y)) > δ, (20)

lim inf
n→∞

d(πn(x), πn(y)) = 0, (21)

lim sup
n→∞

d(πn(x), πn(p)) > δ. (22)

If δ > 0, S is called a δ-scrambled set of D.

Using this I can now define Li-Yorke chaos for D:

Definition 5. Let X be a compact metric space and X∞ := {x1, x2, . . . |xi ∈ X}, the

D ⊂ X∞. We say D is Li-Yorke chaotic if there exists an uncountable scrambled set S. If

D is generated by f−1 we say f−1 is Li-Yorke chaotic.

N.B. If D is generated by f , then D is Li-Yorke chaotic iff f is Li-Yorke chaotic. The im-

portant point here is that Li-Yorke chaos is a property defined for a collection of trajectories

generated by a dynamical system. With f , each point x ∈ X is mapped to a single trajec-

tory {x, f(x), f 2(x), . . .}. However with f−1, there may be an infinite number of trajectories

associated with x as an initial condition. Define the direct limit space of (X, f) as

Ŷ := lim
→

{X, f} := {x ∈ X∞ | xi+1 = f(xi), i ∈ N}.

One then thinks of Ŷ as generated by f and Y being generated by f−1. These are different

subsets of X∞ (and when chaos is present, they are very different spaces topologically). A

scrambled set for f will be a subset of Ŷ and a scrambled set for f−1 will be a subset of Y .

To illustrate that the relationship between these sets is non-trivial, consider the following

example.

Example 1. Let h : [0, 2] → [0, 2] be defined as

h(x) :=

{

4x(1 − x) 0 ≤ x ≤ 1
2(x − 1) 1 < x ≤ 2.
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Figure 4: Graph of function h : [0, 2] → [0, 2].
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Note that h|[0,1] is the logistic map, [0, 1] is invariant under h and that h|[0,1] is Li-Yorke

chaotic. See Figure 4 for the graph of h.

Let x1, y1 ∈ S for f so we have

lim sup
n→∞

d(hn(x), hn(y)) > δ,

lim inf
n→∞

d(hn(x), hn(y)) = 0.

This can be done so that 1 < x1 < 3/2 and 1 < y1 < 3/2. Each trajectory in lim
←−

(X, h)

that start at x and y typically involves selecting from the set generated by f−1. It is not

the case that any x,y ∈ Y with π1(x = x and πt(y) = y will be part of a scrambled set S̃

for h−1 (if one even exists). In this particular example, there is only one preimage for x1

and y1 under h since h|(3/2,2] is 1-to-1 and maps onto (1, 2]. This implies there is only one

point x ∈ Y and y ∈ Y with π1(x = x1 and πt(y) = y1. Moreover xj → 2 and yj → 2

implying that these trajectories are convergent and asymptotic, i.e., not part of a scrambled

set for h−1. Yet, going backward in time, the trajectories are part of a scrambled set and look

highly erratic. See Figure 5 for forward and backward trajectories of h with initial conditions

x1 = 1.1 and y1 = 1.2. We see that looking backwards in times, the dynamics look chaotic,

yet going forward in time (the relevant direction according to the economic model) dynamics

are monotonic and convergent.
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Figure 5: Forward and backward trajectories of h with the same initial conditions.
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We now have defined what it would mean for the CIA, OG or credit model with backward

dynamics to be chaotic. The equilibria in these models are given by iterating a relation (see

Figure 6).

The main result in this section is that f−1 is Li-Yorke chaotic if and only if σ is Li-Yorke

chaotic. I also show that f is Li-Yorke chaotic if and only if F is Li-Yorke chaotic. The

following lemmas will be used.

Lemma 1. Let d be the metric on X and d̃ be the metric on X∞ induced by d. Then for

x,y ∈ X∞, we have given r > 0, if d̃(σk(x), σk(y)) > r for some k ≥ 0, then there exists

m ≥ k such that d(xm+1, ym+1) ≥ r/2.

Proof. Suppose x,y ∈ X∞, r > 0 and there exists k ≥ 0 such that d̃(σk(x), σk(y)) > r.

Suppose that d(xm+1, ym+1) < r/2 for all m ≥ k. Then we have

r < d̃(σk(x), σk(y)) =
∞

∑

i=1

d(xk+i, yk+i)

2i−1
< (r/2)

∞
∑

i=1

1

2i−1
= r.

which is a contradiction.

Lemma 2. Let d be the metric on X and d̃ be the metric on X∞ induced by d. Suppose

f : X → X is continuous and onto, and and Y := lim
←−

(X, f). Let K := maxx,y∈X d(x, y).

Then for x := (x1, x2, . . .),y := (y1, y2, . . .) ∈ Y , and given r > 0, if d̃(F k(x), F k(y)) > r for

some k > 0 with K
2k−1 < r/2, then there exists 1 ≤ m ≤ k such that d(fm(x1), f

m(y1)) > r/4.
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Figure 6: Forward relations from the CIA, OG and credit models.
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Proof. Let k > 0 with K
2k−1 < r/2 and d̃(F k(x), F k(y) > r. Then

r < d̃(F k(x), F k(y) :=

k
∑

j=1

d(fk+1−j(x1), f
k+1−j(y1))

2j−1
+

∞
∑

j=k+1

d(xj−k, yj−k)

2j−1

≤
k

∑

j=1

d(fk+1−j(x1), f
k+1−j(y1))

2j−1
+

K

2k−1

<
k

∑

j=1

d(fk+1−j(x1), f
k+1−j(y1))

2j−1
+

r

2
.

This implies

r

2
<

k
∑

j=1

d(fk+1−j(x1), f
k+1−j(y1))

2j−1
.

Suppose d(f j(x1), f
j(y1)) ≤ r/4 for j = 1, 2, . . . k. Then we have

r

2
<

k
∑

j=1

d(fk+1−j(x1), f
k+1−j(y1))

2j−1
≤

r

4

1 − (1/2)k

1 − (1/2)
≤

r

2
,

a contradiction. Then there exists m with 1 ≤ m ≤ k such that d(fm(x1), f
m(y1)) > r/4.

Theorem 1. Suppose that f : X → X is continuous and X is a compact metric space with

metric d. Let Y := lim
←−

(X, f) with metric

d̃(x,y) :=
∞

∑

i=1

d(xi, yi)

2i−1

and σ : Y → Y be the shift homeomorphism. If f−1 is Li-Yorke chaotic then σ is Li-Yorke

chaotic.

Proof. Let S ⊂ Y be a scrambled set for f−1. Let x,y ∈ S and q ∈ Y be periodic for σ.

Since

d(πn(x), πn(y)) ≤ d̃(σn(x), σn(y)), and d(πn(x), πn(q)) ≤ d̃(σn(x), σn(q)),

It follows that

0 < lim sup d(πn(x), πn(y)) ≤ lim sup d̃(σn(x), σn(y)),

0 < lim sup d(πn(x), πn(q)) ≤ lim sup d̃(σn(x), σn(q)).

We now want to show that

lim inf
n→∞

d̃(σn(x), σn(y)) = 0.

17



To do this, I will show that for any ǫ > 0, there exists a subsequence n1, n2, . . . with nj → ∞

such that

d̃(σnj (x), σnj(y)) < ǫ.

Let K := maxx,y∈X d(x, y). Then

d̃(x, y) :=
T

∑

i=1

d(xi, yi)

2i−1
+

∞
∑

i=T+1

d(xi, yi)

2i−1
≤

T
∑

i=1

d(xi, yi)

2i−1
+K

∞
∑

i=T+1

1

2i−1
=

T−1
∑

i=1

d(xi, yi)

2i−1
+

K

2T−1
.

Pick T ∈ N sufficiently large so that (K/2T−1) < ǫ/2. Pick δ > 0 such that

T
∑

i=1

δ

2i−1
=

1 − (1/2)T

1 − 1/2
δ < ǫ/2.

Since f is continuous and X is compact, fn is uniformly continuous. For the given δ > 0,

for n = 1, 2, . . . , T there exists τn > 0 such that d(fn(x), fn(y)) < δ if d(x, y) < τn. Let

τ := min{δ, τ1, τ2, . . . , τT}. Since lim inf d(πn(x), πn(y)) = 0, there exists infinitely many

m such that d(πm(x), πm(y)) < τ . Call these m1, m2, . . .. These can be picked so that

m1 > T + 1 and mi+1 − mi > T − 1. Let ni = mi − (T + 1). Then

σni(x) = (fT (xmi
), fT−1(xmi

), . . . , f 2(xmi
), f(xmi

), xmi
, xmi+1, . . .),

σni(y) = (fT (ymi
), fT−1(ymi

), . . . , f 2(ymi
), f(ymi

), ymi
, ymi+1, . . .).

Since d(xmi
, ymi

)) < τ , we have have d(fk(xmi
), fk(ymi

)) < δ for k = 1, 2, . . . , T . It then

follows that

d̃(σni(x), σni(y)) < ǫ/2 + ǫ/2 = ǫ.

It follows that

lim inf
n→∞

d̃(σn(x), σn(y)) < ǫ.

Since this is true for any ǫ > 0, we have

lim inf
n→∞

d̃(σn(x), σn(y)) = 0.

Theorem 2. Suppose that f : X → X is continuous and X is a compact metric space with

metric d. Let Y := lim
←−

(X, f) with metric

d̃(x,y) :=

∞
∑

i=1

d(xi, yi)

2i−1
,
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and σ : Y → Y be the shift homeomorphism. If σ is Li-Yorke chaotic then f−1 is Li-Yorke

chaotic. Moreover, if S is δ-scrambled for σ then S is (δ/2)-scrambled for D where D is the

set of trajectories generated by f−1.

Proof. First note that the set D ⊂ X∞ generated by f−1 is Y . Since σ is Li-Yorke chaotic,

there exists an uncountable scrambled set S ⊂ Y ≡ D for σ. We need to show that S is

δ-scrambled for D. Let x, y ∈ S, x 6= y and q be periodic for σ.

lim sup
n→∞

d̃(σn(x), σn(y)) > δ, (23)

lim inf
n→∞

d̃(σn(x), σn(y)) = 0, (24)

lim sup
n→∞

d̃(σn(x), σn(p)) > δ. (25)

Note that by definition of d̃ and the fact that d is a metric, we have

d̃(σn(x), σn(y)) =
∞

∑

i=1

d(xn+i, yn+i)

2i−1
≥ d(xn+1, yn+1).

This implies that

lim inf
n→∞

d(πn+1(x), πn+1(y)) ≤ lim inf
n→∞

d̃(σn(x), σn(y)) = 0.

This implies

lim inf
n→∞

d(πn(x), πn(y)) = 0.

Let

c := lim sup
n→∞

d̃(σn(x), σn(y)) > 0.

This implies the existence of a subsequence with the property

c = lim
j→∞

d̃(σnj(x), σnj (y)) > 0.

For 0 < ǫ < c, there exists an N such that for all j ≥ N we have

0 < c − ǫ < d̃(σnj(x), σnj(y)).

I want to construct a subsequence of d(πn(x), πn(y)) strictly bounded away from 0. Since X is

compact, this subsequence will have a convergent sub-subsequence converging to something

strictly positive. This will imply the lim sup d(πn(x), πn(y)) > 0. For j = N , let t1 = nj .

Then we have 0 < c − ǫ < d̃(σt1(x), σt1(y)). By Lemma 1, there exists an m1 ≥ t1 such that

d(πm1
(x), πm1

(y)) ≥ (c−ǫ)/2. Next, pick an nj > m1, call it t2. Then by the same reasoning,
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there exists an m2 ≥ t2 with d(πm2
(x), πm2

(y)) ≥ (c − ǫ)/2. By repeating this process, we

get a sequence mi with mi < mi+1 and mi → ∞ with the property that d(πmi
(x), πmi

(y)) ≥

(c− ǫ)/2 for all i. Since X is compact, there exists a K > 0 (finite) with d(πmi
(x), πmi

(y)) ∈

[(c−ǫ)/2, K] for all i ∈ N. Since [(c−ǫ)/2, K] is compact, this sequence {d(πmi
(x), πmi

(y))}∞i=1

contains a convergent subsequence converging to p∗ ∈ [(c− ǫ)/2, K]. This implies that there

exists a subsequence {d(πki
(x), πki

(y))}∞i=1 with limi→∞ d(πki
(x), πki

(y)) = p∗ ≥ (c − ǫ)/2.

This implies

lim sup d(πn(x), πn(y)) ≥ p∗ ≥ (c − ǫ)/2 > 0.

Since this is true for all 0 < ǫ < c, we have

lim sup d(πn(x), πn(y)) ≥ p∗ ≥ c/2 > 0.

A similar argument shows

lim sup d(πn(x), πn(q)) ≥ c/2 > 0.

Note that c > δ implies c/2 > δ/2. This implies that if S is δ-scrambled for σ with δ > 0,

then S is (δ/2)-scrambled for D.

Theorem 3. Suppose that f : X → X is continuous and X is a compact metric space with

metric d. Let Y := lim
←−

(X, f) with metric

d̃(x,y) :=
∞

∑

i=1

d(xi, yi)

2i−1
.

and F : Y → Y be the induced homeomorphism. The f is Li-Yorke chaotic if and only if F

is Li-Yorke chaotic.

Proof. (⇒) Suppose that f is Li-Yorke chaotic. Let S be a scrambled set for f . For each

x ∈ S, π−1
1 (x) 6= ∅. Construct S̃ as follows: for each x ∈ S, select one point in π−1

1 (x).

There are typically many such S̃ subsets of Y . They all have the following property: for all

y, y′ ∈ S̃ with y 6= y′ we have π1(y) ∈ S, π1(y
′) ∈ S and π1(y) 6= π1(y

′). Note that S̃ is

uncountable since S is uncountable.

Let x = (x1, x2, . . .),y = (y1, y2, . . .) ∈ S̃ with x 6= y and q = (q1, q2, q3, . . . , qM , q1, q2, . . .)

be periodic for F . Then x1 6= y1 and x1, y1 ∈ S. The we have

lim sup
n→∞

d(fn(x1), f
n(y1)) > δ
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and

lim sup
n→∞

d(fn(x1), f
n(q1)) > δ

Since

d̃(F n(x), F n(y)) ≥ d(fn(x1), f
n(y1)) and d̃(F n(x), F n(q)) ≥ d(fn(x1), f

n(q1))

it follows that

lim sup
n→∞

d̃(F n(x), F n(y)) > δ and lim sup
n→∞

d̃(F n(x), F n(q)) > δ.

We now want to show that

lim inf
n→∞

d̃(F n(x), F n(y)) = 0.

To do this, I will show that for any ǫ > 0, there exists a subsequence n1, n2, . . . with nj → ∞

such that

d̃(F nj(x), F nj(y)) < ǫ.

Let K := maxx,y∈X d(x, y). Then

d̃(x, y) :=
T

∑

i=1

d(xi, yi)

2i−1
+

∞
∑

i=T+1

d(xi, yi)

2i−1
≤

T
∑

i=1

d(xi, yi)

2i−1
+K

∞
∑

i=T+1

1

2i−1
=

T−1
∑

i=1

d(xi, yi)

2i−1
+

K

2T−1
.

Pick T sufficiently large so that (K/2T−1) < ǫ/2. Pick δ > 0 such that

T
∑

i=1

δ

2i−1
=

1 − (1/2)T

1 − 1/2
δ < ǫ/2.

Since f is continuous and X is compact, fn is uniformly continuous. For the given δ > 0,

for n = 1, 2, . . . , T there exists τn > 0 such that d(fn(x), fn(y)) < δ if d(x, y) < τn. Let

τ := min{δ, τ1, τ2, . . . , τT}. Since lim inf d(fn(x1), f
n(y1)) = 0, there exists infinitely many

m such that d(fm(x1), f
m(y1)) < τ . Call these m1, m2, . . .. These can be picked so that

mi+1 − mi > T . Let ni = mi + T . Then

F ni(x) = (fT ◦ fmi(x1), f
T−1 ◦ fmi(x1), . . . , f

2 ◦ fmi(x1), f ◦ fmi(x1), f
mi(x1), . . .),

F ni(y) = (fT ◦ fmi(y1), f
T−1 ◦ fmi(y1), . . . , f

2 ◦ fmi(y1), f ◦ fmi(y1), f
mi(y1), . . .).

Since d(fmi(x1), f
mi(y1)) < τ , we have have d(fk ◦ fmi(x1), f

k ◦ fmi(y1)) < δ for k =

1, 2, . . . , T . It then follows that

d̃(F ni(x), F ni(y)) < ǫ/2 + ǫ/2 = ǫ.
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It follows that

lim inf
n→∞

d̃(F n(x), F n(y)) < ǫ.

Since this is true for any ǫ > 0, we have

lim inf
n→∞

d̃(F n(x), F n(y)) = 0.

(⇐) Suppose that F is Li-Yorke chaotic. Let S̃ be a scrambled set for F . Let S := π1(S̃).

Then S must be uncountable. If it is not, then there exists a countable set V ⊂ Y such that

for each x ∈ S̃, there exists a y ∈ V such that d̃(F n(x), F n(y)) → 0. This implies that there

must exist x,x′ ∈ S̃ such that d̃(F n(x), F n(x′)) → 0 – a contradiction that S̃ is a scrambled

set.

Let x1, y1 ∈ S, x = π1

1(x1) ∩ S̃ and y = π1

1(y1) ∩ S̃. Let q1 be periodic with orbit

(q1, q2, . . . , qM , q1, q2, . . .). Note that by definition of d̃ and the fact that d is a metric, we

have

d̃(F n(x), F n(y)) ≥ d(fn(x1), f
n(y1)).

This implies that

lim inf
n→∞

d(fn(x1), f
n(y1) ≤ lim inf

n→∞
d̃(F n(x), F n(y) = 0.

This implies

lim inf
n→∞

d(fn(x1), f
n(y1)) = 0.

Let

c := lim sup
n→∞

d̃(F n(x), F n(y)) > 0.

This implies the existence of a subsequence with the property

c = lim
j→∞

d̃(F nj(x), F nj (y)) > 0,

for j = 1, 2, . . .. Let n0 = 1. For 0 < ǫ < c, there exists an N such that for all j ≥ N we

have

0 < r := c − ǫ < d̃(F nj(x), F nj(y)).

Let k > 1 such that K/2k−1 < r/2. Without loss of generality assume that n1 > k and

nj+1 − nj > k. Let k1 = n1 and ki+1 := ni+1 − ni for i ∈ N. Note for each ki, we have

K/2ki−1 < r/2. Since

d̃(F nj(x), F nj(y)) > r,
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By Lemma 2, there exists mj with nj−1 ≤ mj ≤ nj with

d(fmj(x1), f
mj (y1) > r/4.

This implies that

lim sup d(fn(x1), f
n(y1) ≥ r/4 > 0.

A similar argument shows

lim sup d(fn(x1), f
n(q1)) ≥ r/4 > 0.

Hence S is a scrambled set for f and f is Li-Yorke chaotic.

The main result of Li and Yorke (1975) is that for a continuous map on a compact interval

of the reals, a period-three implies chaos in the sense of Li-Yorke. To make this connection,

I will discuss how periodic orbits are related to topological entropy (another measure of

complicated dynamics) and then how topological entropy is related to Li-Yorke chaos.

Topological entropy involves the concept of an (n, ǫ)-separated set.

Definition 6. Let f : X → X be a continuous function on a compact metric space X. For

n ∈ N and ǫ > 0, a set E ⊂ X is (n, ǫ)-separated under f provided for distinct x, y ∈ E,

∃0 ≤ k < n such that d(fk(x), fk(y)) > ǫ.

Let f : X → X be a continuous map on a compact metric space X with metric d. Let

A, E ⊂ X. We that E is (d, ǫ, A)-spanning if E is finite and for every y ∈ A, there exists

an x ∈ E such that d(x, y) < ǫ. Given f , for n ∈ Z
+ we define a new metric df

n on X given

by df
n(x, y) := max0≤i≤n−1 d(f i(x), f i(y)). For n ∈ Z

+ and ǫ > 0, let S(df
n, ǫ, A) denote the

minimum cardinality of all (df
n, ǫ, A)-spanning sets. Heuristically, the (df

n, ǫ, A)-spanning set

E denote the number of initial conditions in A that an observer of the dynamical system f

can distinguish given orbits of length n and an ability to measure the system with accuracy

no greater than ǫ.

Definition 7. For A ⊂ X, we define

h(f, A, ǫ) := lim sup
n→∞

(1/n)[log S(df
n, ǫ, A)].

The topological entropy of f on A is defined by

h(f, A) := lim
ǫ→0

h(f, A, ǫ).

The topological entropy of f is defined by h(f) := h(f, X).
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Note that since f is a single-valued map, we can associate each finite orbit of length n

from our dynamical system (x1, x2, . . . , xn) with its initial condition x1. Intuitively our set

E is (df
n, ǫ, X)-spanning if for every orbit y under f of length n there is some orbit x under

f of length n starting in E such that each point in time xi and yi are no more than ǫ apart.

If one cannot distinguish orbits that are never more than ǫ apart then S(df
n, ǫ, X) tells us the

number of distinct orbits there are of length n. An alternative (and equivalent) formulation,

motivated by the inverse limits approach to dynamical systems, is the following. Let

lim
→

{X, f, n} = {(x1, x2, . . . , xn) ∈ Xn|xi = f(xi−1), i = 2, . . . , n}.

Note that this is just the truncation after the first n coordinates of the direct limit space

lim
→

{X, f} := {(x1, x2, . . .) ∈ X∞|xi+1 = f(xi), i ∈ N}.

We can define a metric on Dn on Xn given by Dn(x,y) := max1≤i≤n d(xi, yi). Then we call

a subset C ⊂ lim
→

{X, f, n} a (Dn, ǫ, lim
→

{X, f, n})-spanning set if C is finite and for each y ∈

lim
→

{X, f, n}, there exists an x ∈ C such that Dn(x,y) < ǫ. For x ∈ lim
→

{X, f, n} and δ > 0,

let B(x, δ) := {y ∈ lim
→

{X, f, n}|Dn(x,y) < δ}. This is just an open ball in lim
→

{X, f, n} with

center x and radius δ. Then we see that if C = {x1,x2, . . . ,xM} is a (Dn, ǫ, lim
→

{X, f, n})-

spanning set then lim
→

{X, f, n} = ∪M
i=1B(xi, ǫ), i.e, ǫ neighborhoods of the points in C form

an open cover of lim
→

{X, f, n}. If C ⊂ lim
→

{X, f, n} is a (Dn, ǫ, lim
→

{X, f, n})-spanning set then

the projection of the first coordinate E := π1(C) ⊂ X is (df
n, ǫ, X)-spanning. Conversely, if

E ⊂ X is a (df
n, ǫ, X)-spanning set then there exists a (unique) finite subset C ⊂ lim

→
{X, f, n}

such that C is (Dn, ǫ, lim
→

{X, f, n})-spanning and E = π1(C). So the notion of spanning

can be applied to either a subset E ⊂ X (“initial conditions”) or a subset of orbits C ⊂

lim
→

{X, f, n}. The difference here is entirely superficial since f is single-valued there is a

one-to-one mapping between orbits and initial conditions. Given the equivalence of the

cardinality of these sets, we can use the direct limit space approach to give an equivalent

definition of topological entropy for f :

h(f) := lim
ǫ→0

[

lim sup
n→∞

1

n
log S(Dn, ǫ, lim

→
{X, f, n})

]

.

When f−1 is multi-valued, we can no longer associate a unique orbit to each initial

condition. However, we can still talk about the space of orbits under the action of f−1 with

length n and what it would mean for a finite subset of this space to form a spanning set. Let

lim
←−

(X, f, n) := {x ∈ Xn|xi−1 = f(xi), i =, 2, . . . , n}.
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This set is just the truncation after the first n coordinates of the inverse limit space lim
←−

(X, f)

onto Xn. Let Dn be a metric on lim
←−

(X, f, n) as defined above (this makes sense since both

lim
←−

(X, f, n) and lim
→

{X, f, n} are subsets of Xn). We say that a finite set C̄ ⊂ lim
←−

(X, f, n)

is (Dn, ǫ, lim
←−

(X, f, n))-spanning if for every ȳ ∈ lim
←−

(X, f, n), there exists some x̄ ∈ C̄ such

that Dn(y,x) < ǫ. Having defined an (Dn, ǫ, lim
←−

(X, f, n))-spanning sets for f−1, h(f−1) can

be defined as above:

h(f−1) := lim
ǫ→0

[

lim sup
n→∞

1

n
log S(Dn, ǫ, lim

←−
(X, f, n))

]

.

The next theorem generalizes the well-known result for entropy when f is a homeomorphism.

Theorem 4 (Kennedy et al. (2008)). Let f : X → X be a continuous onto map on a compact

metric space X (not necessarily a homeomorphism). Then h(f) = h(f−1).

The next theorem links the topological entropy of f and that of the induced homeomor-

phism F .

Theorem 5 (Bowen (1970), Proposition 5.2, p. 35). Let f : X → X be a continuous

onto map on a compact metric space X, Y := lim
←−

(X, f) and F : Y → Y the induced

homeomorphism. Then h(f) = h(F ).

Note that since σ = F−1, we have h(F ) = h(σ) and h(f) = h(σ). The following theorem

show that positive topological entropy implies Li-Yorke chaos.

Theorem 6 (Blanchard et al. (2002)). Let f : X → X be continuous, X a compact metric

space. If h(f) > 0, then f is Li-Yorke chaotic.

The converse of this theorem is not true. Smı́tal (1986)) constructs Li-Yorke chaotic

functions with zero topological entropy. We now have all of the necessary pieces for the

following:

Theorem 7. Let f : X → X be continuous and X a compact metric space. Then if h(f) > 0,

then f−1 is Li-Yorke chaotic.

Proof. By Theorem 5, h(f) > 0 implies h(σ) > 0. By Theorem 6 we have σ is Li-Yorke

chaotic. By Theorem 2, if σ is Li-Yorke chaotic, then f−1 is Li-Yorke chaotic.

Theorem 8 (Misiurewicz (1979)). Suppose X = [a, b] ⊂ R with a < b and the usual

Euclidean metric and f : X → X is continuous. Then f has a cycle of order not equal to 2k

for k = 0, 1, 2, . . ., if and only if h(f) > 0.
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This gives the following.

Theorem 9. Let f : I → I be continuous, I a compact interval in R. If f has a periodic

point of order not equal to 2k for k = 0, 1, 2, . . ., then f−1 is Li-Yorke chaotic.

Proof. Since f has a periodic point of order not equal to 2k for k = 0, 1, 2, . . ., then it follows

from Theorem 8 that h(f) > 0. This implies h(σ) > 0 and hence σ is Li-Yorke chaotic by

Theorem 6. It follows from Theorem 2 that f−1 is Li-Yorke chaotic.

Corollary 1. If f has a period 3, then f−1 is Li-Yorke chaotic.

4 Conclusion

In some economic models, the dynamical system characterizing equilibria in the model has

multi-valued forward dynamics but single-valued backward dynamics. One says that such a

dynamical system has backward dynamics. In this paper, I have offered a definition of chaos

for such a dynamical system that is in the spirit of Li and Yorke (1975). Furthermore, by

utilizing the inverse limit space, I have been able to provide sufficient condition for the set

of equilibria to be Li-Yorke chaotic. An open question is the following:

• Suppose f is Li-Yorke chaotic with zero topological entropy. Does f being Li-Yorke

chaotic imply that f−1 is Li-Yorke chaotic?

In future research, I would like to investigate more general MVDSs represented by iterated

relations (set-valued functions). Such systems are a natural generalization and extension of

those represented by iterated maps. Akin (1993) and McGehee (1992) make this argument

and contain some initial results for such dynamical systems. Even on an interval, continu-

ous (closed) relations can behave dynamically quite differently from continuous maps. As

noted earlier, the theorems of Sharkovskĭı (1995) and Li and Yorke (1975) do not extend to

continuous relations on an interval. My interest in such systems is motivated by the work of

Christiano and Harrison (1999). Their model is the standard real business cycle model with

a production externality. Equilibria in this model correspond to forward orbits of an MVDS

(see Figure 7) that is multi-valued going forward and backward in time.
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Figure 7: MVDS from Christiano and Harrison (1999), R : (0, 1) → (0, 1).
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